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Abstract

Two bosonic pairing mechanisms with different sources are studied within the quantum
rotor method of the path integral formulation. Firstly, interaction-based pairing is de-
rived from density-induced tunnelling, the first-order correction to the Bose-Hubbard
model, which stems from many body correlations and contributes significantly to hop-
ping in bosonic systems especially. The pair condensate term is additionally transformed
into dissipative in two approaches: assumed, where the pair fraction is treated as the
environment and coupled harmonically to the single particle system, and derived, where
the dissipation is internal. The second pairing mechanism is correlation-based, gener-
ated by the second order expansion of the standard Bose-Hubbard correlator. Both
pair effective phase models take the form of an extended Quantum Phase model. The
difference lies in the single and pair condensation coefficients, which depend nontrivially
on the Bose-Hubbard parameters, as well as imaginary time. Imaginary time depen-
dence emerges in different coefficients in the interaction-based and the correlation-based
models. The properties of the pair condensate and its effect on single particle conden-
sation in both effective phase models are compared. In both cases, the pair fraction
strengthens the single particle condensate phase, increasing its critical temperature.
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Chapter 1

Introduction

It is common knowledge today that fermions form Cooper pairs in superconductors. The
question naturally follows: do bosons form pairs of their own? Is there a condensate of
bosonic pairs, lurking within or nearby the well-known single particle Bose-Einstein con-
densate (BEC)? If there is, how do the two phases interact? What effect would pairing
have on the behaviour of strongly correlated bosonic systems in low temperatures?

The question of whether or not bosons forms pairs has been answered in the af-
firmative in experiments. Optical lattice experiments have allowed to observe single
particle Bose-Einstein condensates using various methods, such as time-of-flight im-
ages [17], trap squeezing [51, 55], or multiband spectroscopy [9]. The condensed phase
is identifiable as interference peaks, or a global compressibility of the atomic cloud.
Bosonic pairs with anti-correlated momenta have been detected within optical lattices
by Tenart et al. [60], in the depletion of an equilibrium interacting helium IV gas in
the high density and strongly-interacting regime. The fraction of correlated particle
pairs coexists with the macroscopically occupied condensate ground state. The probe
was sensitive enough to detect quantum many body correlations (MBC). However, only
large momenta where investigated, precluding detailed analysis of the effect of temper-
ature on the pair condensate. It would also have been impossible in those experiments
to increase a specific interaction, such as density-induced tunnelling. Observation of
pair condensates is a new and challenging subject, as precise control is required over
multiple parameters. There is much yet to be discovered about boson pairs.

9



10 CHAPTER 1. INTRODUCTION

Now that we know bosonic pairing can be measured, we wish to find out what
physical phenomena it might stem from. Optical lattice–related studies tend to assume
a Hamiltonian with chosen parameters and study its properties. The source and nature
of the assumed interactions and coefficients are not a concern. This is possible due
to the high customisability of optical lattices, which can act as quantum simulators.
Our venture into the sources of bosonic pairing mechanisms goes beyond assumptions
and strives to explicitly derive the relevant terms and their coefficients. The quantum
rotor method [46] within the path integral formulation makes such derivations possible,
albeit not simple.

In Chapter 2, we expand the standard Bose-Hubbard model (BHM) by adding the
density-induced tunnelling term, the interaction with the biggest energy contribution,
and the one most likely to significantly affect the total tunnelling [39]. An interaction-
based bosonic pairing term appears in the effective phase model. The properties of this
pair condensed phase are examined in relation to the single particle condensate.

Once a bosonic pairing mechanism has been derived, the next question is: how
does the pair fraction affect the single particle condensate? In other words, what are
we missing if we simplify a model past the point where many body correlations are
allowed to contribute? Pair condensates seem to be in two minds, either strengthening
or depleting the single particle superfluid depending on parameter range. Interestingly,
in effective phase models, the terms responsible for pairing, when approximated to
second order, are mathematically very similar to dissipative terms, as in Caldeira and
Leggett, 1981 [6]. The similarity is especially clear if the pairing term coefficient contains
imaginary time in the form

(
τ − τ ′

)−2.

Dissipative behaviour is usually generated by coupling the original system with ex-
ternal degrees of freedom. Driven-dissipative many body systems have been realised
experimentally by coupling trapped ultra-cold atoms to the optical modes of a laser-
driven dispersive cavity [49, 48, 29, 68, 15, 37]. An increase of interest in theoretical
descriptions of such systems has followed. Counterintuitively, within the right parame-
ter range, dissipation can enhance coherence and entanglement [44, 43, 2, 10, 24, 1, 59].
This stabilisation leads to a wealth of interesting phenomena, including emergent phase
transitions, many body pair coherent states, and novel mode competition and symme-
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try breaking. In two-photon driven bosonic lattice models, the dissipative steady states
can be found exactly [50]. A two particle loss term can increase correlations to the point
of effectively inhibiting dissipation altogether [28]. In high Tc superconductors, non-
local dissipative bosonic mediators can act coherently and increase the superconducting
critical temperature Tc [56]. The stabilising effect of dissipation can also facilitate ex-
perimental observation of non-equilibrium and exotic states, such as superfluid time
crystals [27, 26, 8, 54]. Bosonic pairs, or doublons, have been studied in systems with
loss, including three-body losses, which can be used to realise effective three-body inter-
actions [40, 5]. The complex nature of driven-dissipative many body models means that
it is not possible to fully describe them using methods that do not account for quantum
fluctuations and information on the spatial distributions of individuals [57]. Therefore,
up to now, the body of work has consisted mainly of relatively limited approaches,
such as few body systems and one-dimensional studies [53, 20, 63]. Furthermore, for all
the new and interesting phenomena that have already been observed, dissipation has
consistently been treated as an external factor.

Chapter 3 is dedicated to exploring what the contructive effect of dissipation on
correlations means for the relation between single and pair condensates. The S = 1

pseudospin mapping is exchanged for the more robust spherical model. The interaction-
based pairing phase term is expanded to second order and treated as dissipative, in
order to better understand the effect of the pair condensate on the standard BEC.
This leads to a system where dissipation is not imposed by additional, external terms,
but emerges from the intrinsic interactions themselves. We reveal a different facet of
dissipative behaviour: one that is an implicit property of a strongly correlated model
with extended interactions. It is known that dissipation can generate effective many
body interactions. We show that the opposite is also possible: many body interactions
can themselves be a source of dissipative behaviour. To verify the behaviour of this
internal dissipation, results are compared to an assumed model, based on the same
derivation but obtained in the standard way, in which the pair condensate is separated
from the original system and treated as an external bath, coupled harmonically to the
single particle condensate.

Even when systems of strongly interacting bosonic gases are forced into simple
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interactions, many body correlations do still occur and affect their behaviour [12, 11, 58].
Any phenomena that might stem from MBCs warrant a closer look. In Chapter 4,
therefore, we look for bosonic pairing within the correlations of the Bose-Hubbard model
itself. We take a deeper look into the standard model and find a pair condensation term,
which depends on imaginary time, in the second order series expansion of the correlator.
The self-consistent harmonic approximation (SCHA) is used to study the effect of this
correlation-based pair fraction on the single particle BEC.

Finally, the two derived pairing mechanisms are compared under the SCHA in Chap-
ter 5. We show how orbital magnetic effects can be applied to facilitate differentiating
between the two pairing mechanisms.

Chapters 2-5 focus on the physics and results rather than mathematical details.
Detailed derivations of effective phase models and further approximations leading to
the presented results are gathered in Appendices A-C.

1.1 The Bose-Hubbard model

The Hubbard model is a fundamental quantum many body model which represents an
interacting gas trapped in an external potential. The interactions are short range, be-
tween nearest neighbouring lattice sites only. The model was originally intended for de-
scribing the behaviour of strongly correlated electrons in solids. However, conveniently,
its bosonic counterpart turned out to be extremely well suited for the description of
ultracold atoms in optical lattices [16]. A sinusoidal external potential represents an
optical lattice framework, which means there is a direct relation between the amplitude,
frequency and relative phases of the counterpropagating laser beams that constitute the
lattice and the parameters of the model [13], as well as lattice geometry [65].

Optical lattices generate precisely controllable experimental conditions in simple ge-
ometries. The particles of a cooled gas are forced to only exhibit simple interactions,
allowing their study in an essentially defect free environment using a plethora of meth-
ods and approximations [22, 31, 62, 7, 36, 14, 61, 41, 18, 3]. Among those, however,
there has not been many studies focused on density dependent interactions [25, 42].
Density-induced tunnelling has been shown to contribute significantly to single particle
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tunnelling and thus affect the condensate phase, especially in bosonic systems [14].
The Hamiltonian of the Bose-Hubbard model is

Ĥ =
U

2

∑

i

n̂i (n̂i − 1)− t
∑

〈i,j〉
â†i âj − µ

∑

i

n̂i, (1.1)

where 〈i, j〉 identifies a summation over nearest neighbouring sites and:

• â†i , âi are the bosonic coherent creation and annihilation operators, respectively;

• n̂i = â†i âi is the boson number operator on site i;

• U > 0 is the on-site repulsive interaction between two particles;

• t is the exchange integral for single particle tunnelling between neighbouring lat-
tice sites;

• µ is the chemical potential.

The BHM is an approximation of the general second quantisation model of a strongly
interacting bosonic gas in a sinusoidal external potential, where only the two terms
with the largest energy contributions are preserved. Extended BHMs are obtained by
adding one or more of the omitted terms back into the Hamiltonian. [32]

1.1.1 General second quantisation Hamiltonian

The second quantisation many-body Hamiltonian describing a gas of N interacting
bosons in an external potential Vext is

Ĥ(t) =

∫
dr Ψ̂†(r, t)

[
− ~2

2m
∇2 + Vext

]
Ψ̂(r, t)+

+
1

2

∫
drdr′ Ψ̂† (r, t) Ψ̂† (r′, t)V (r− r′) Ψ̂ (r, t) Ψ̂ (r′, t) , (1.2)

with bosonic creation and annihilation field operators Ψ̂† (r, t) and Ψ̂ (r, t), respectively.
We consider only on-site and nearest neighbour interactions. Three body interaction
terms and higher can be added as additional potential terms as needed.



14 CHAPTER 1. INTRODUCTION

In the absence of long range interactions, the field operators can be expanded in a
tight-binding approximation into a basis of orthonormal Wannier functions:

Ψ̂(r, t) =
∑

i

âiwi (r) , (1.3)

where âi is the bosonic annihilation operator for the i-th lattice site. The Wannier
functions wi are orthonormal and localised around lattice sites, indicated by the minima
of the external potential Vext; they decay exponentially outside of the i-th site [21].

Since interactions between particles in cold bosonic gases are dominated by s-wave
scattering, the two-particle interaction potential can be treated as an isotropic contact
pseudopotential with s-wave scattering length as [4]:

V (r− r′) =
4π~2as
m

δ(r− r′) = g δ(r− r′), (1.4)

where m is the atomic mass. In lattice coordinates r→ r/a, the interaction integral in
Eq. (1.2) can be rewritten in the form

Vijkl =
8as
πa

∫
drw∗i (r)w

∗
j (r)wk(r)wl(r) (1.5)

and then divided into specific interactions.

Thus, the on-site two-particle repulsive interaction for a contact potential is

U = gER

∫
dr |wi(r)|4, (1.6)

the nearest neighbour interaction is

V = ER (Vijij + Vijji) , (1.7)

density-induced tunnelling, or the bond-charge interaction is

JBC = −ER
(Viiij + Viiji)

2
, (1.8)
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and the nearest neighbour pair tunnelling is

Jpair = ERViijj. (1.9)

These amplitudes depend on nothing but the properties of Wannier functions and ER =

~2/8ma2.
In the case of a sinusoidal potential Vext, the full Hamiltonian in the Wannier func-

tion basis is

Ĥ =− J
∑

〈i,j〉
â†i âj +

U

2

∑

i

n̂i(n̂i − 1) +
V

2

∑

〈i,j〉
n̂in̂j+

− JBC
∑

〈i,j〉
â†i (n̂i + n̂j)âj +

Jpair
2

∑

〈i,j〉
â†2i â

2
j , (1.10)

where additionally

J = −
∫
drw∗i (r)

[
−~2∇2

2m
+ Vext

]
wj(r) (1.11)

is the isotropic exchange integral for single particle tunnelling between adjacent sites,
designated t in Eq. (1.1) and in further chapters. The significance of each of the terms
in Eq. (1.10) has been illustrated in Fig. 1.1.

1.1.2 Density-induced tunnelling

It is clear in Fig. 1.1 that density-induced tunnelling, JBC , is responsible for the largest
energy contribution outside of the two standard Bose-Hubbard terms, U and J . The
effects of DIT have been discussed in fermionic systems [19]; however, since bosons are
not constrained by the Pauli principle, it follows that this interaction-assisted mobility
will have more bearing on bosonic systems.

Exemplary zero-temperature phase diagrams between the two BHM ground states,
superfluid and Mott insulator, are shown in Fig. 1.2 with and without DIT. The
presence of density-induced tunnelling strengthens the superfluid, with the insulator-
suppressing effects increasing with particle density. The variational method, however,
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Multi-orbital and density-induced tunneling of bosons in optical lattices 15
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Figure C1: Lowest-band parameters for on-site interaction U , tunneling J , bond-charge
tunneling JBC, correlated pair-tunneling Jpair and density-density interaction V .

with matrix elements U = Uiiii, JBC = �Uiiij , Jpair = Uiijj/2 and V = Uijij .
In Fig. C1 these parameters are plotted as a function of the lattice depth. The off-

site density-density interaction is very small compared to the on-site interaction and can
consequently be neglected. This also applies for the correlated pair-tunneling, which is even
negligible when compared with the single-particle tunneling matrix element J . The bond-
charge tunneling matrix element, however, reaches ten percent of the conventional tunneling
amplitude for intermediate and deep lattices. In addition, it scales with the total particle
number and can thus be a significant contribution to the total tunneling. Note that the multi-
orbital renormalization can influence the individual parameters very strongly.

Appendix D. Multi-orbital bond-charge tunneling

In analogy to the multi-orbital tunneling, the orbital degree of freedom also affects the bond-
charge interaction. The single-band bond-charge or density-induced tunneling is introduced
in the main text [see Eq. (3) and Fig. 1(b)]. As discussed before, we can restrict the calculation
to two neighboring sites and write the multi-orbital bond-charge operator (see Fig. 1(c), main
text) as

ĴBC,MO =
1

2

X

↵���

b̂
(↵)†
R

⇣
(JBC
↵��� + JBC

↵���) b̂
(�)†
L b̂

(�)
L

+P (JBC
���↵ + JBC

��↵�) b̂
(�)†
R b̂

(�)
R

⌘
b̂
(�)
L

(D.1)

with

JBC
↵��� = �

Z
d3r

Z
d3r0w(↵)

R (r)w
(�)
L (r0) V (r � r0) w

(�)
L (r0)w(�)

L (r)

= �P

Z
d3r

Z
d3r0 w(↵)

L (r)w
(�)
R (r0) V (r � r0) w

(�)
R (r0)w(�)

R (r),

(D.2)

Figure 1.1: Dependence on optical lattice depth of the lowest-band parameters of var-
ious terms of the extended Bose-Hubbard model: on-site interaction U , tunnelling J ,
bond-charge or density-induced tunnelling JBC, correlated pair-tunnelling Jpair, density-
density interaction V . Source: [39]



1.2. METHODOLOGY 17

��������

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

μ/U

J/
U

coherent states

Bose-Hubbard model
BHM + density-induced hopping

Figure 1.2: Mean field zero-temperature Mott insulator–superfluid phase diagram with-
out and with density-induced tunnelling (JBC/U = 0.004), calculated in the coherent
state basis using the variational method. Source: [32]

is too oversimplified for analysing density-dependent processes. Only the three low-
est energy states within the coherent state basis are taken into account; many body
correlations (MBC) are not preserved whatsoever. While sufficient as a first glimpse
at the density-induced tunnelling interaction, more accurate methods able to take into
account MBCs are necessary to truly understand its effect on the standard system.

1.2 Methodology

In the path integral formulation, quantum operators are substituted by complex fields
in the coherent state basis. This allows to introduce continuous effective statistical
functions, starting with the partition function, which is defined by the effective action.
Extremely precise analytical calculations can be carried out on microscopic models
within this framework. In the particular case of quadratic models, the partition function
takes the elegant form of a multi-dimensional Gaussian integral. The goal is thus usually
to transform and, if necessary, approximate a given model to a quadratic form.

The coherent state basis in path integrals introduces overcompleteness. There is
more information within the partition function than is needed to fully describe a system.
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Therefore, there are two important steps to any path integral study: firstly, to recognise
what in a chosen model is important information and what is clutter; secondly, to make
sure any transformations carried out on the model preserve the former and decrease the
latter. The choice of methods and approximations has great bearing on what results are
possible to be obtained. Sometimes an approximation seems obviously helpful, but later
on turns out to have barred access to correlations responsible for the very phenomena
we were looking to analyse.

Below are listed the methods used in further chapters, along with short descriptions
of the applications they were chosen for. Details on where and how exactly these meth-
ods were used are shown in Appendices A-C, which contain step by step calculations.

1.2.1 Quantum rotor method

The U (1) quantum rotor method is the basis of all path integral calculations in this
work, in Chapters 2-4. Since bosonic fields are complex, they are comprised of two
factors: amplitude b and phase φ. The quantum rotor method relies on the assumption
that the bosonic phase φ (τ) provides all pertinent information about dynamics, while
the amplitude is set as constant. In the case of the standard Bose-Hubbard model, the
Quantum Phase Model can be derived [46].

We start with the partition function in the complex coherent state basis,

Z =

∫
{DāDa} e−S[ā,a], (1.12)

where S is the effective action,

S [ā, a] =

∫ β

0

dτ

[∑

i

āi (τ)
∂

∂τ
ai (τ) +H (τ)

]
, (1.13)

which contains the complex field form of the Hamiltonian, H. The strategy in any
path integral study is to decouple any terms above quadratic in the effective action S,
Eq. (1.13). In the case of strongly correlated bosons, the first step is the Hubbard-
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Stratonovich transformation, which decouples the on-site two particle interaction term,

e−
U
2

∑
i

∫
dτ n2

i (τ) =

∫
dV

2π
e
−∑i

∫
dτ

[
V 2
i (τ)

2U
−iVi(τ)ni(τ)

]
. (1.14)

This introduces an effective electrochemical potential field, V , which looks similar to
a mean field. The potential V is dynamic and site-dependent, however, meaning the
Hubbard-Stratonovich transformation is exact.

A gauge transformation,
ai (τ) = bi (τ) eiφi(τ), (1.15)

is also performed, to separate phase from amplitude. The quadratic bosonic amplitude
terms constitute a Gaussian integral, which carried out is equal to the trace of the
logarithm of the model’s correlator G:

∫ {
Db̄iDbi

}
e−

∫ β
0 dτ b̄iGbi =

∫ β

0

dτ detG = e
∫ β
0 dτ Tr ln(G)−1

. (1.16)

At this point, φ is the only imaginary time–dependent variable in the partition func-
tion. The original model is thus replaced by an effective phase-only model, with the
contribution from the bosonic amplitudes kept within the correlator G. The quantum
rotor method preserves the same information on many body correlations and spatial
distributions of individual particles as the original Hamiltonian, either in the phase
fields or in the bosonic correlator.

The path integral formulation provides overcomplete systems. A model must be
narrowed down to the areas of interest of a given study, within specific parameter
ranges and limits. What information can be obtained depends on the methods and
approximations chosen in further calculations, to analyse the effective phase model.

1.2.2 S = 1 pseudospin mapping

The S = 1 pseudospin model is relevant to phase ordering in granular superconduc-
tors [64] and systems of spin-charge separated stacks of condensates interacting via
interplane Josephson coupling [30], which mathematically can be further related to
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Josephson junction arrays. The quantum phase fields are transformed into classical
spin operators. This allows to preserve some correlations under a mean field approxi-
mation of the pseudospin exchange term.

We start out with a phase-only Hamiltonian, such as the Quantum Phase Model
(QPM):

H = U
∑

i

N2 −
∑

〈i,j〉
ε1 cos (φi − φj) . (1.17)

The eigenstates of the bosonic number operator,

〈k |N (φ)|m〉 =

∫ 2π

0

dφ

2π
e−ikφ

(
1

i

∂

∂φ

)
eimφ = mδk,m, (1.18)

can be used to define trigonometric functions of phase:

〈k |cosφ|m〉 =

∫ 2π

0

dφ

2π
e−i(k−m)φ cosφ =

1

2
(δk−m−1,0 + δk−m+1,0) , (1.19)

〈k |sinφ|m〉 =
i

2
(δk−m−1,0 − δk−m+1,0) . (1.20)

The number operator basis is limited in this method to its lowest-energy states, in
which k,m ∈ {−1, 0, 1}. The phase terms can then be rewritten as S = 1 pseudospin
operators, assuming kBT/U < 1:

N (φ) = Sz, (1.21)

cosφ =
1√
2
Sx, (1.22)

sinφ =
1√
2
Sy. (1.23)

This transforms the quantum phase Hamiltonian into a classical spin Hamiltonian. In
the case of the QPM, Eq. (1.17), the transformation is as follows:
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H = U
∑

i

N2 −
∑

〈i,j〉
ε1 (cosφi cosφj + sinφi sinφj) (1.24)

= U
∑

i

(Szi )2 − 1

2
ε1

∑

〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
. (1.25)

The pseudo exchange term is then treated with a mean field approximation:

Sxi S
x
j ≈ 〈Sxi 〉Sxj + Sxi

〈
Sxj
〉
− 〈Sxi 〉

〈
Sxj
〉
. (1.26)

This introduces the order parameter Ψ = 〈Sxi 〉.The pseudospin mean field Hamilto-
nian is

HMF = U (Szi )2 − 1

2
ε1S

x
i 〈Sxi 〉 = J

(
U

J
(Szi )2 − Sxi Ψ

)
, (1.27)

where J = 1
2
zε1.

The next step is calculating the partition function, which is based on the eigenvalues
of the spin model,

Z = Tr
{
e−βH

}
=

3∑

n=1

e−βEn . (1.28)

From here, the free energy per lattice site, f , can be calculated and minimised in terms of
the order parameter Ψ to obtain a self-consistent equation for Ψ. Other thermodynamic
functions can be derived from f as temperature derivatives. Among those, specific
heat is particularly interesting, since phase transitions are easily identifiable therein
by a lambda-shaped peak. It is worth remembering, however, that the final step is a
mean field approximation, which erases any correlations in the system which are not
transferred from phase fields to pseudospin operators.
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1.2.3 Self-consistent harmonic approximation

The self-consistent harmonic approximation (SCHA) [64] is based on the variational
principle, which states that, for any system characterised by effective action S and free
energy F ,

F ≤ F0 +
1

~β
〈S − S0〉0 = F̃ , (1.29)

where S0 is the action of any chosen trial system and F0 the corresponding trial free
energy,

F0 = − 1

β
lnZ0 = − 1

β
ln

∫
{Dφ} e−S0[φ]. (1.30)

The average 〈S − S0〉0 is calculated over the trial model. For a phase model in the path
integral framework, it takes the form

〈S − S0〉0 =
1

Z0

∫
{Dφ} exp

(
−1

~
S0 [φ]

)
(S [φ]− S0 [φ]) , (1.31)

with the trial partition function

Z0 =

∫
{Dφ} exp

(
−1

~
S0 [φ]

)
. (1.32)

The strategy of variational approximations is to choose a well known trial effective
action and minimise the combined free energy, F̃ , by demanding that its variation
δF̃ = 0. The trial coefficients are calculated based on this condition and depend on the
parameters of the actual system. Thus, the properties of any model can be analysed
by considering the trial system in its stead.

The trial action used in the SCHA is harmonic, with stiffness K:

S0 [φ] =

∫ β

0

dτ


 1

U

∑

i

(
∂φi
∂τ

)2

+
K

2

∑

〈i,j〉
φ2
ij


 . (1.33)



1.2. METHODOLOGY 23

The free energy variation,

δF̃ = δ

(
F0 +

1

β
〈S − S0〉0

)
= 0, (1.34)

consists of two partial derivatives:
(
∂F̃
∂K

)

Dij

+

(
∂F̃
∂Dij

)

K

(
∂Dij

∂K

)
= 0, (1.35)

where Dij the trial nearest neighbour phase-phase average, which can be derived with
use of the Fourier transform, replacing the inverse lattice dependence with the density
of states ρ (ξ),

Dij =
〈
(φi − φj)2〉

0
=

1

z

∫
dξ ρ (ξ)

√
(z − ξ)U

2K
coth

(
β

2

√
(z − ξ)KU

2

)
. (1.36)

The order parameters are defined as

Ψ1 = 〈cosφi〉 = e−
1
2〈φ2

i 〉, (1.37)

Ψ2 = 〈cos 2φi〉 = e−2〈φ2
i 〉. (1.38)

The averages in Eqs. (1.37-1.38)

〈
φ2
i

〉
=

1

2

∫
dξ ρ (ξ)

√
U

K (z − ξ) coth

(
β

2

√
(z − ξ)KU

)
. (1.39)

The result of variation minimisation, Eq. (1.34), is a self-consistent equation for the
trial stiffness K. Since K is a function of the coefficients of the original system, the
trial system can be analysed in its stead. The density of states function ρ (ξ) can be
inserted in analytical form for any chosen geometry.

Much like the S = 1 pseudospin mapping method in Section 1.2.2, the self-consistent
harmonic approximation operates on analytical formulas for free energy. As such, any
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thermodynamic function can be derived from the trial free energy F0 and studied.
However, the SCHA preserves specific correlations within the condensate phase. It
cannot be reliably applied beyond the critical region, as it struggles to reproduce the
mutable characteristics of the critical point. The ordering of the system is different
in the normal phase, so the SCHA cannot be recreated using the same parameters
therein. Nonetheless, the critical temperature itself is easily identifiable as the point
where thermodynamic functions rapidly cut off. Instead of specific heat, we can focus
on entropy, to understand how the order within the condensate changes in the presence
of pairing.

1.2.4 Quantum spherical mapping

The spherical model is a spin model, characterised by the variability of the direction
and absolute value of the spins. The only condition is that the latter average to 1 over
the entire lattice. To ensure that, the spherical condition requires that the sum of all
spins σ squared be equal the total number of spins N :

∑

i

σ2
i = N. (1.40)

1.2.4.1 Quantum spherical model

The unconstrained quantum spherical model partition function is

Z =

∫ +∞

−∞

[∏

i

Dσi

][
1

2π~
∏

i

Dπi

]
e−S[σi,πi]/~ (1.41)

=

∫ +∞

−∞

[∏

i

Dσi

][
1

2π~
∏

i

Dπi

]
e−

1
~
∫ ~β
0 dτL[σi,πi], (1.42)

with Lagrangian

L [σi (τ) , πi (τ)] = i
∑

i

πi
d

dτ
σi + U

∑

i

π2
i −

∑

〈i,j〉
Jijσiσj − h

∑

i

σi. (1.43)
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The spherical condition, Eq. (1.40), is introduced into Z by means of a Dirac delta
function, which can be expanded into an integral as

δ [x (τ)] =
1

2πi

∫ c+i∞

c−i∞
dλ e

∫ ~β
0 dτλx(τ). (1.44)

This introduces a new parameter into the system: the spherical constraint λ.

The independent π term can be integrated over and the partition function takes the
form

Z =
1

2πi

√
πN~
U

∫ c+i∞

c−i∞
dλ e~βλN

∫ +∞

−∞

[∏

i

Dσi

]

× e−
1
~
∫ ~β
0 dτ

[
~

4U

∑
i(
dσi
dτ )

2−∑〈i,j〉 Jijσiσj−h∑i σi+~λ
∑
〈i,j〉 σiσjδij

]
. (1.45)

After Fourier and Matsubara transforms, the spin-dependent part of the partition
function is Gaussian; the spin dependence can be integrated out. The final product is
a partition function in which the single variable is the spherical constraint λ:

Z =
1

2πi
eC
∫ c+i∞

c−i∞
dλ eNφ(λ), (1.46)

where
φ (λ) = ~βλ+

1

2N

∑

k,m

ln
~

~
4U
ω2
m − Jk + ~λ

+
1

4~2β

h2

~λ− J0

. (1.47)

The partition function can be approximated at saddlepoint in terms of the spherical
constraint λ.
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1.2.4.2 Saddlepoint approximation

The saddlepoint approximation method is a complex plane extension of Laplace’s
method of approximating integrals of the form

∫ b

a

eMf(x) dx, (1.48)

where f (x) is a twice-differentiable function and M is large. In the complex case, the
integral is defined over a contour C. The approximation assumes that the neighbour-
hood of the maximum of the function f makes the most significant contributions to the
integral.

For sufficiently large M →∞, the integral is approximated by

∫ b

a

eMf(x) dx ≈
√

2π

Mf ′′ (x0)
eMf(x0). (1.49)

The stationary point x0 can be found by minimising f :
[
df

dx

]

x=x0

= 0. (1.50)

In the quantum spherical model, the integral approximation Eq. (1.49) is

Z =
1

2πi

(
πNN

)N
2

√
2π

Nφ′′ (λ0)
exp [Nφ (λ0)] , (1.51)

where λ0 can be calculated from
dφ

dλ
= 0. (1.52)

Since free energy per site is defined as

F = − 1

βN
lnZ = − 1

β
φ (λ0) , (1.53)

finding the stationary point λ0 is equivalent to minimising the free energy. For λ0 to
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be the critical point, F ′ (λ) must be equal zero at λ = λ0. This condition leads to the
critical line equation, which after summation over Matsubara frequencies is

1 =
1

2N

∑

k

√
U

J0 − Jk
coth

(
β
√
U (J0 − Jk)

)
. (1.54)

Any thermodynamic function can also be calculated along the critical line from
temperature derivatives of the free energy F in Eq. (1.53).

1.2.4.3 Mapping phase models

This model can be mapped onto, much like in the case of S = 1 pseudospin, Sec.
1.2.2. The phase terms are transformed into spin operators by the same rules, Eqs.
(1.21-1.23). The quantum spherical model is more robust than the S = 1 case, which
only considers the three lowest-energy states. To make use of the additional available
information, the mean field utilised in S = 1 pseudospin in Eq. (1.26) is in this case
replaced by a saddlepoint approximation of the spherical constraint λ, introduced in
Eq. (1.44).

1.3 Orbital magnetic effects

The Peierls phase factor shifts the single particle hopping by

tij → tij exp

(
2πi

Φ0

∫ ri

rj

A · dl
)
, (1.55)

with flux quantum Φ0 = hc/e and elementary charge e. This corresponds to synthetic
magnetic fields B = ∇ ×A (r), the vector potential of which, A (r), determines the
phase shift [38, 23]. Moving the phase factor from the constant hopping coefficient t
into the lattice factor ξk allows us to introduce magnetic fields within the density of
states (DOS) functions themselves. [47, 45]

These effective fields correspond mathematically to angular velocity, meaning a
rapidly rotating frame can be effectively treated as an external magnetic field. Those
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fields can be distinguished by their rotation period, f , known within this context as the
rotation frustration parameter. Neither the sign of f nor its integer part have bearing
on the properties of the system. The relevant range for f thus consists of rational
values within 0 < f < 1/2, that is f = 1/2, 1/3, 1/4, .... Within that range, analytical
expressions for the magnetic density of states functions can be obtained using Harper’s
equation [47].

1.3.1 Phase models with bosonic pairing

In effective phase models, bosonic condensates are represented by exponents of φi − φj
for neighbouring sites i, j. If such terms contain a factor of 2, they correspond to pair
condensation. Since orbital magnetic effects correspond to phase shifts and affect the
density of states, a specific vector potential A (r) affects single and pair condensates
differently. Two separate DOS functions must be introduced, with two frustration
parameters: the single f and the pair f2. The relation between the two is f2 = 2f , due
to the factor of 2 in pairing terms.

Orbital magnetic effects are nontrivial and difficult to describe analytically. The
density of states functions change; the bandwidth increases and van Hove singularities
appear within. Analytical formulas for DOS functions in various magnetic fields are
complex and can be found in Appendix D. Diagrams of magnetic DOS functions are
shown in Fig. 1.3.
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Figure 1.3: Density of states diagrams on square lattice with various orbital magnetic
effects.
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Chapter 2

Interaction-based pairing

Following the reasoning in [39], our attention turns towards density-induced tunnelling
(DIT), as the interaction most likely to contribute significant alterations to hopping and
bosonic condensation of all the terms not considered in the standard Bose-Hubbard
model (BHM). We carry out a quantum rotor derivation to see how the DIT term
changes the effective phase model compared to the standard BHM case [46]. We know
that DIT strengthens the single particle superfluid in zero temperature, as shown in
Section 1.1.2. We are now interested in the effect it has on Bose-Einstein condensation
at non-zero temperatures, as well as whether it generates additional phase terms.

To avoid clutter, detailed calculations for this chapter can be found in Chapter A.

2.1 Model

We start with the extended Bose-Hubbard model Hamiltonian with density-induced
tunnelling:

Ĥ =
U

2

∑

i

n̂i (n̂i − 1)− t

2

∑

〈i,j〉

(
â†i âj + â†j âi

)
− µ

∑

i

n̂i+

− JDIT
∑

〈i,j〉

[
â†i (n̂i + n̂j) âj + â†j (n̂i + n̂j) âi

]
, (2.1)

31
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where

• U > 0 is the on-site repulsion,

• t is the isotropic hopping integral,

• µ is the chemical potential,

• JDIT is the density-induced tunnelling amplitude, designated JBC in Section 1.1.

The Hamiltonian is rewritten to resemble the standard BHM, Eq. (1.1), as follows:

Ĥ =
U

2

∑

i

n̂2
i − J

∑

〈i,j〉
â†i âj −

∑

〈i,j〉
µ̃ijn̂i, (2.2)

with the coefficients

J = t− 2JDIT , (2.3)

µ̃ij = µ̄+ 4JDIT â
†
i âj, (2.4)

µ̄ =
U

2
+ µ− 2JDIT . (2.5)

At this point, the path integral formalism is introduced. After Hubbard-Stratonovich
and gauge transformations, the path integral partition function is

Z =

∫ {
Db̄Db

}∫
Dφ e−Sb[b̄,b]e−Sφ[n,φ̇], (2.6)

where the bosonic amplitude and phase effective action terms are, respectively,

Sb =

∫ β

0

dτ
∑

〈i,j〉

{
b̄i (τ) g1

ijbj (τ) + g2
ij

[
b̄i (τ) bj (τ)

]2}
, (2.7)

Sφ =
∑

i

∫ β

0

dτ

{
1

2U

[
φ̇i (τ)

]2

− µ̃

iU
φ̇i (τ)

}
, (2.8)
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where the bosonic coefficients in Eq. (2.7) are

g1
ij = δij

∂

∂τ
− (t− 2JDIT ) e−iφij(τ) − 4βµ̄

U
JDIT e

−iφij(τ), (2.9)

g2
ij = −8β

U
J2
DIT e

−i2φij(τ), (2.10)

and φij (τ) = φi (τ)− φj (τ).

The similarity to an extended Quantum Phase Model (QPM),

H = J1

∑

〈i,j〉
cos (φij) + J2

∑

〈i,j〉
cos (2φij) , (2.11)

is identifiable in terms dependent on both e−iφij(τ) in the linear coefficient in Eq. (2.9)
and e−i2φij(τ) in the quadratic coefficient in Eq. (2.10). The exponents can be rewritten
respectively as cosine and double cosine terms. The single cosine term appears in the
standard QPM, Eq. (1.17), and describes the superfluid phase. The double cosine
term corresponds to pair condensation. In contrast to the single hopping, t, which
contributes linearly to the single particle condensation term, the double phase exponent
in Eq. (2.10) is proportional to the second power of the density-induced amplitude JDIT :
g2
ij ∼ J2

DIT .

The impact of density-induced tunnelling on the single particle condensate is al-
ready visible in the bosonic linear coefficient, g1

ij, Eq. (2.9), which contains two parts
dependent on the DIT amplitude JDIT . These two terms generate two contrasting ef-
fects on the Bose-Einstein condensate. On the one hand, density-induced tunnelling
reduces single particle condensation with an amplitude 2JDIT , which shifts the single
hopping t. On the other hand, however, is the last term in g1

ij, which strengthens the
BEC at low temperatures and high densities. In the whole range of temperatures, DIT
tends to have a dissipative effect on the original system, an effect similar to the pres-
ence of three-body correlations in optical lattice systems [25]. At high densities and
low temperatures, however, DIT works in favour of the superfluid phase.

The pair–extended Quantum Phase model is assumed to consist of two independent
parts with constant single and pair amplitudes J1 and J2. However, as it turns out,
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J1 and J2 are neither constant nor independent. They can even depend on imaginary
time, or temperature. With the proper derivation of coefficients in QPM-related studies,
the convenience of assumed models can be grounded in the actuality of a microscopic
model.1

Up to this point, the transformations are exact. The next steps require applying
approximations that will lead to a phase-only effective model.

2.1.1 Effective phase model

To obtain a quadratic form in the bosonic action Sb, Eq. (2.7), we make use of Wick’s
theorem, splitting the quadruple term into quadratic terms which contain bosonic av-
erages:

∑

〈i,j〉
b†ib
†
ibjbj '

∑

〈i,j〉

[
〈bjbj〉 b†ib†i +

〈
b†ib
†
i

〉
bjbj +

(
4
〈
b†ibj
〉

+ δij

)
b†ibj
]
. (2.12)

At this point, the bosonic field terms in Sb can be brought together as a quadratic
Gaussian integral:

I =

∫ {
Db̄iDbi

}
exp



−

∫ β

0

dτ
∑

〈i,j〉

[
b̄i (τ)Sijbj (τ)−∆j b̄ib̄i − ∆̄ibjbj

]


 (2.13)

=

∫ {
Db̄iDbi

}
exp {−Seff} , (2.14)

1Cf. A. Krzywicka, T. P. Polak, Coexistence of two kinds of superfluidity at finite temperatures in
optical lattices, Annals of Physics 443:168973, 2022 [34].
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where

Sij = G0 + S
′

ij, (2.15)

G−1
0 = δij

(
∂

∂τ
+ µ̄

)
, (2.16)

S
′

ij = −Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT e

−i2φij(τ) ·
(
4
〈
b̄ibj
〉

+ δij
)
, (2.17)

∆i = − 8

U
J2
DIT e

−i2φij(τ) 〈bibi〉 , (2.18)

∆̄i = − 8

U
J2
DIT e

−i2φij(τ)
〈
b̄ib̄i
〉
. (2.19)

In order to carry out the integration, we rewrite Seff in Eq. (2.14) in matrix form,
introducing a Nambu-like space. The effective action then takes the form

Seff = B̄ΓB, (2.20)

where the bosonic Nambu-like vectors are defined as

B =




bi

b̄i

bj

b̄j



, (2.21)

B̄ =
(
b̄i bi b̄j bj

)
, (2.22)

and the correlation matrix is

Γ =




0 1
2
δij∆i

1
2
Sij 0

1
2
δij∆̄i 0 0 0

0 0 0 1
2
δij∆i

0 1
2
Sij

1
2
δij∆̄i 0



. (2.23)
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After bosonic integration, the partition function is

Z =

∫
{Dφ} e−

∑
i

∫ β
0 dτ

[
1

2U (φ̇i(τ))
2
+ µ̃
iU
φ̇i(τ)

]
· e
∫ β
0 dτ Tr ln Γ−1

. (2.24)

Next, we approximate G0, Eq. (2.16) by b2
0, which is obtained by minimising the

Hamiltonian [46, 47]:

∂

∂b0

H|b=b0 = 0. (2.25)

In the case of the DIT BHM Hamiltonian,

b2
0 =

z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
. (2.26)

This approximation has been deemed sufficient to study low-temperature effects. It can
be extended to account for correlations in k space, e.g. with the Bogoliubov approach
[67], providing a single framework to study both atom-atom correlations and time of
flight images in optical lattice systems.

The trace in Eq. (2.24) is calculated as the sum of the eigenvalues of the correlation
matrix Γ, Eq. (2.23), after its diagonalisation:

Tr ln Γ′−1 = G2
0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0. (2.27)

At this point, we assume the on-site two-particle interaction U is strong. This
simplification cannot accurately describe chemical potential variation; instead, µ is
treated as a constant parameter. Once all averages in Eq. (2.27) are supplemented, the
effective phase partition function is

Z =

∫
{Dφ} e−

∑
i

∫ β
0 dτ 1

2U [φ̇i(τ)]
2
+
∑
〈i,j〉

∫ β
0 dτ {g1 cos[φij(τ)]+g2 cos[2φij(τ)]}. (2.28)
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where

g1 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
64µ̄

U2
J3
DIT −

16

U
(t− 2JDIT ) J2

DIT

]

×
{

2

[
coth

βµ

2
+ coth

β (µ+ U)

2

]
+ 1

}
+

+
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

[
8µ̄

U
JDIT − 2 (t− 2JDIT )

]
, (2.29)

g2 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

×
[

(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

− 2 (t− 2JDIT )
8µ̄

U
JDIT

]
. (2.30)

We can also rewrite exponential phase terms as trigonometric functions. Our effective
phase action is then

S [φ] =

∫ β

0

dτ
1

U

∑

i

(
∂φi
∂τ

)2

+

∫ β

0

dτ


−g1

∑

〈i,j〉
cosφij − g2

∑

〈i,j〉
cos 2φij


 . (2.31)

We have thus obtained a form equivalent to the extended Quantum Phase Model,
with coefficients derived from the microscopic DIT BHM, Eq. (2.1). Our effective
phase model is now ready for analysis. First, the phase terms in Eq. (2.31) are trans-
formed into spin and their values limited to S = 1. The mapping transfers some of
the correlations into the pseudospin operators themselves. Afterwards, a mean field
approximation is applied. To observe the two condensate phases of single particles and
pairs, which stem from the single and double cosine terms, we look at their respective
order parameters, which minimise the free energy.
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2.2 S = 1 pseudospin mapping

To map the partition function, Eq. (2.28), onto the S = 1 pseudospin model, at
kBT/U < 1, the phase terms are transformed as shown in Section 1.2.2:

N (φ) = Sz, (2.32)

cosφi =
1√
2
Sxi , (2.33)

sinφi =
1√
2
Syi . (2.34)

Quadrupolar pseudo-superexchange operators are also introduced for the double cosine
pair term:

Qi = (Sxi )2 − (Syi )2 , (2.35)

Qxy
i = 2Sxi S

y
i . (2.36)

The mean field approximated pseudospin hamiltonian [30] is

HMF = J

(
U

J
(Szi )2 − Sxi Ψφ −

J2

J
QiΨ2φ

)
, (2.37)

with new condensate coefficients

J =
1

2
zg1, (2.38)

J2 =
1

4
zg2. (2.39)

The single Ψφ and pair Ψ2φ condensate order parameters are defined as

Ψφ = 〈Sxi 〉 , (2.40)

Ψ2φ = 〈Qi〉 . (2.41)
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The free energy per site of the pseudospin system is defined as

f =
1

2

(
JΨ2

φ + J2Ψ2
2φ

)
− 1

β
lnZ, (2.42)

where the partition function can be calculated from the S = 1 energy eigenvalues. The
two order parameters, single condensate Ψφ and pair condensate Ψ2φ, minimise the free
energy:

∂f

∂Ψφ

= 0,
∂f

∂Ψ2φ

= 0. (2.43)

These conditions lead to the following self-consistent equations:

1 =
4J tanh

[
β
2

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ

]

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ [X + 2]
, (2.44)

Ψ2φ =
U

J2 − 4J
+

4J

4J − J2

· 1−X
2 +X

, (2.45)

where

X =
e−

β
2 (U+3J2Ψ2φ)

cosh
[
β
2

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ

] . (2.46)

Based on the free energy f , any thermodynamic functions can be studied.

2.3 Thermodynamics

“Below are some exemplary diagrams obtained with use of Eqs. (2.44)
and (2.45). Fig. (2.45) shows the dependence of the single and pair order
parameters on a normalized temperature, T/TC1 . Parameter values have
been selected to ensure that phase separation can be seen clearly. The tem-
perature is normalized to highlight the amplitude of the energy calculations.
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TC1 is the critical temperature of the single Bose-Einstein condensate phase
transition, which separates the single Ψφ and pair Ψ2φ superfluid phases.

“Even though a mean-field approximation was used in the later stages
of this analysis, the system clearly retained enough information to expose
phenomena that elude approaches based exclusively on mean-fields. Not
only are there two separate, coexisting superfluid phases in this model; pair
condensation occurs independently of single-particle condensation. What’s
more, pair condensation always survives at higher temperatures than sin-
gle BEC, even as particle density and energy scales are changed. In the
range of parameters where t/JDIT < 1 (pair energy is higher), single par-
ticle condensation is almost suppressed and energy fluctuations are enor-
mous, but pretty narrow in the temperature range. This is contrary to
the opposite case, t/JDIT > 1, where a strong single superfluid phase and
a well-established and separated pair condensed fraction can be observed.
No region has been observed with only single BEC present (Ψφ 6= 0 and
Ψ2φ = 0). The phase transitions are lambda-like, in accordance with those
already observed experimentally.

“The actual temperature dependence of the specific heat is shown in Fig.
(2.2), where opposite energy scales of the single hopping t and the density-
induced tunnelling amplitude JDIT are compared. Increasing JDIT increases
the BEC critical temperature TC1 . However, the superfluid phase is simul-
taneously suppressed and a strong response in the pair sector is generated.
In the opposite regime, the pair condensate phase disappears entirely. DIT
instead provides support for the single BEC, while also increasing the BEC
critical temperature TC1/U . For a DIT amplitude of JDIT/U = 0.009, the
critical temperature TC1 of single-particle condensation becomes approxi-
mately seven times larger than when JDIT = 0. Even at the smaller value
of JDIT/U = 0.003, TC1 is still almost twice as large.”2

2Source: A. Krzywicka, T. P. Polak, Coexistence of two kinds of superfluidity at finite temperatures
in optical lattices, Annals of Physics 443:168973, 2022 [34].
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Figure 2.1: Temperature dependence of various functions for chosen parameter values:
t/U = 0.01 and JDIT/U = 0.004 on the left; t/U = 0.001 and JDIT/U = 0.0075 on the
right. (µ/U = 1.42)
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Figure 2.2: (a): Specific heat temperature dependence at opposite single and pair energy
scales. (Left peak t/JDIT > 1, right peak JDIT/t < 1.) (b): Effect of density-induced
tunnelling on the single boson condensation critical temperature, TC1, for opposite en-
ergy scales. (µ/U = 1.42). Source: adapted from [34].
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2.4 Conclusions

The first question posited in the Introduction thus receives an answer: bosons do form
pairs. In fact, due to spin dependence being much less important than in the case of
fermions, the phenomenon of bosonic pairing seems a much more frequent possibility. In
terms of the effective action in the path integral formulation, any multi-index quadruple
term could potentially be a source thereof. One might assume, then, that bosons both
enter and leave the pair condensate phase without much consequence to the system.
If that were the case, there would be little point in studying the mechanisms and
properties of bosonic pairing. However, the single particle Bose-Einstein condensate,
which is of primary interest in bosonic systems, clearly reacts to and interacts with the
pair condensate phase.

To find out more about the effect a pairing mechanism might have on the standard
BEC, we take another look at the effective phase model in Eq. (2.28). We are interested
in a recontextualisation of the pair action term, strictly in terms of its effect on the
single particle condensate.
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Chapter 3

Dissipative interaction-based pairing

We now know that bosons do form pairs and that the pairing mechanism is respon-
sible for the emergence of a new phase of bosonic pair condensation. Depending on
the range of parameters, this phenomenon might compete with the single condensate
phase, but might also strengthen it instead, as seen in Eq. (2.9). There is another
mechanism which at certain ranges of parameters increases correlations rather than
depleting them: dissipation in open systems. Pair condensates have indeed been shown
to exhibit dissipative behaviour in experiments [60, 52, 66], causing single condensate
depletion.

Keeping in mind the Taylor series expansion for a cosine, we speculate that the
double cosine term responsible for bosonic pairing in the effective phase model, Eq.
(2.28), might be reinterpreted as dissipative after Caldeira and Leggett, 1981 [6]. The
simplest approach to this idea is one often adopted for studying open system dissipation:
to separate the pair fraction from the single particle condensate and treat the former
as an external reservoir, coupled harmonically to the original system of the latter. We
entertain another idea, however. Since the trace in Eq. (2.27) contains the second
power of the correlator G0, Eq. (2.16), which in turn depends on imaginary time τ , we
might expect terms proportional to

(
τ − τ ′

)−2 to emerge if we keep the original form
of the correlator instead of approximating it with the constant amplitude b2

0, as in Eq.
(2.26). In that case, the artificial process of separating and then coupling back together
in a different manner would become unnecessary. This would mean that the original

45
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system itself supplies correlations which are dissipative in nature, without interacting
with the environment; a very unintuitive, and therefore exciting, proposition. In order
to ascertain whether such behaviour would make any sense, we set out to both look
for implicit dissipation and compare it with the known harmonic coupling of the single
particle condensate with an external reservoir, which in our case consists of the pair
fraction. The pseudospin mapping is expanded from S = 1 to the sturdier quantum
spherical model, shown in Section 1.2.4. The mean field approximation is replaced with
a saddlepoint value of the spherical constraint, λ.

As in the previous chapter, detailed calculations are available in Appendix B.

3.1 Phase model

We return to the effective phase model with interaction-based pairing, Eq. (2.28):

S [φ] = SU [φ] + S1 [φ] + S2 [φ] , (3.1)

which is comprised of three parts: an interaction part,

SU [φ] =
1

2U

∑

〈i,j〉

∫ β

0

dτ

(
∂φi
∂τ

)2

+
µ̄

iU
φ̇i (τ) , (3.2)

a single condensation part,

S1 [φ] = g1

∑

〈i,j〉

∫ β

0

dτ cos [φi (τ)− φj (τ)] , (3.3)

and a pair condensation part,

S2 [φ] = g2

∑

〈i,j〉

∫ β

0

dτdτ
′

cos 2
[
φi (τ)− φj

(
τ
′
)]
. (3.4)

The condensate coefficients, single g1 and pair g2, depend on the treatment of the
phase-phase correlator, G0, Eq. (2.16).
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3.1.1 Coefficients

We consider two possible approaches. The simpler option is to approximate the corre-
lator G0 by a constant value. Deriving the coefficients explicitly is more complicated,
but we find that doing so reveals implicit dissipative behaviour contained within the
model.

3.1.1.1 Effective amplitudes

The traditional approach is to approximate the correlator G0, Eq. (2.16), by the bosonic
amplitude b2

0, , as in Eq. (2.26) in Chapter 2:

b2
0 =

z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
. (3.5)

The single and pair condensation coefficients, respectively, are as in Eqs. (A.125)
and (A.126):

g1 =− z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT

[
2 (t− 2JDIT ) +

8µ̄

U
JDIT

]
+

+

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2(
64µ̄

U2
J3
DIT +

16

U
JJ2

DIT

)

×
{

2

[
coth

(
−βµ

2

)
+ coth

(
β (µ+ U)

2

)]
+ 1

}
, (3.6)

g2 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

×
[

(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT

]
. (3.7)

These amplitudes are known to provide adequate results at low temperatures, e.g., to
recover the well known λ-shaped peaks in the specific heat, which indicate single and
pair condensation phase transitions [34].
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3.1.1.2 Derived amplitudes

We introduce an alternative, more robust approach: keeping the original, imaginary
time–dependent form of G0, Eq. (2.16), which after Fourier transform takes the form
of

G0 =
−iωm + µ̄

ω2
m + µ̄2

. (3.8)

The condensate coefficients depend on imaginary time, providing new physical effects:

g′1 (ωm) =− −iωm + µ̄

ω2
m + µ̄2

[
2 (t− 2JDIT ) +

8µ̄

U
JDIT

]
+ (3.9)

+
1

(−iωm + µ̄)2

(
64µ̄

U2
J3
DIT +

16

U
JJ2

DIT

)
(3.10)

×
{

2

[
coth

(
−βµ

2

)
+ coth

(
β (µ+ U)

2

)]
+ 1

}
, (3.11)

g′2 (ωm) =
1

(−iωm + µ̄)2

×
[

(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT

]
. (3.12)

In this version, imaginary time–dependent terms are present in both condensation parts
of the effective phase model, S1 and S2. The single coefficient g′1 generates two con-
tributions. The first, Eq. (3.9), is negligible in low temperatures after Matsubara
summation. The second has an additional dissipation-like impact, Eq. (3.10). How-
ever, this latter term depends on higher orders of JDIT/U than g′2, Eq. (3.12), so at
JDIT/U � 1 the pair dissipation is much stronger. Therefore, in this work, we forgo
the marginally relevant contributions introduced by the single condensation coefficient
g′1 and replace it with the approximated g1 of Eq. (3.6), focusing on the properties of
the pair term, Eq. (3.4), in low temperatures.

The pair action term, S ′2, can be rewritten to separate the imaginary time depen-
dency from the pair coefficient g′2:



3.2. DISSIPATIVE MODELS 49

S ′2 [φ] = g′2
∑

〈i,j〉

∫ β

0

dτdτ
′ 1

(τ − τ ′)2 cos 2
[
φi (τ)− φj

(
τ
′
)]
, (3.13)

where the derived pair condensate coefficient is now

g′2 = (t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT . (3.14)

Other than the imaginary time dependence in the pair action S ′2, Eq. (3.13), the
effective action remains the same, Eq. (3.1).

3.2 Dissipative models

Both versions of the pair condensation part of the effective action can be rewritten as
dissipative. Traditionally, dissipation is added to Hamiltonians as an arbitrary external
factor. However, since the action derived from Matsubara time contains full information
about quantum fluctuations, the dissipative nature of the pair condensate emerges
naturally in Eq. (3.13). After series expanding the double cosine, we rewrite the
derived pair effective action term S ′2 as explicitly dissipative:

S ′2 [φ] = 2g′2
∑

〈i,j〉

∫ β

0

dτdτ
′ 1

(τ − τ ′)2

[
φi (τ)− φj

(
τ
′
)]2

. (3.15)

In the simpler case of the assumed model, with g2 in Eq. (3.7), the imaginary time factor
does not emerge naturally. To study the dissipative effect of the pair term in Eq. (3.4),
we take the more travelled road and treat the two condensates as separate, harmonically
coupled systems: condensed bosons submerged in a bath of harmonic potential, formed
by the pair condensed system. The derivation of the effective action is typical for such
many body systems and has been carried out under various circumstances [6, 35]. The
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double cosine action term in Eq. (3.4) is transformed into a dissipative term:

S2 [φ] = 2g2

∑

〈i,j〉

∫ β

0

dτdτ
′

[
φi (τ)− φj

(
τ
′)

τ − τ ′
]2

. (3.16)

Ultimately, the two approaches differ only by their pair condensate coefficients:

G0

↗
↘

b0 coupled condensates
→ g1 single particle
→ g2 pair

G0 full treatment
→ g′1 → g1 single particle

→ g′2 pair

(3.17)

At a glance, the difference is trivial, but the two models exhibit substantially distinct
behaviour. Most importantly, in the derived model, the dissipation of the condensate
does not stem from interactions with any external reservoir, but from internal corre-
lations of the model itself. The proper treatment of quantum fluctuations requires an
understanding of the properties of the derived actions, as well as the application of
relevant approximations.

3.3 Spherical mapping and critical line equation

The Fourier transformed quantum rotor spherical partition function is

Z =

∫ +i∞

−i∞

[Dλ (τ)

2πi

]
e−Nφ[λ], (3.18)

where the saddlepoint function is

φ [λ] = −βλ− 1

2N

∑

k

ln

{
1

βπ

[
λ− g1ξk + G−1 (ωm)

]}
, (3.19)

with Lagrange multiplier λ, lattice constant ξk = 2
∑

d cos kd and phase-phase correlator
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G (τ, τ ′) = exp

{
1

β

∑

m

1− cos [ωm (τ − τ ′)]
1

2U
ω2
m + 4g2 |ωm|

}
. (3.20)

The critical line equation is derived, as usual, by minimising free energy, this time
with respect to the spherical constraint λ:

∂F
∂λ

= 0. (3.21)

After rewriting lattice dependence in terms of the density of states function, defined
as

ρ (E) =
1

N

∑

k

δ (E − ξk) , (3.22)

the critical line equation is

1 =
1

2β

∫
dE

∑

m

ρ (E)

λ− g1E + G−1 (ωm)
. (3.23)

However, this form is too complex to easily incorporate into the critical line equation.
In low temperatures and densities, we approximate the inverse of the correlator G in
Eq. (3.20) by

G−1 (τ, τ ′) ≈ 1

2U
ω2
m + 4g2 |ωm| . (3.24)

At the critical point, the Lagrange multiplier λ can be substituted by its saddlepoint
value, λ0 = g1ξmax. The critical line equation, Eq. (3.23), after performing Matsubara
summation in the low temperature limit, β →∞, becomes

1 =
1

2π

∫
dξ
ρ (ξ)

g (ξ)

{
ψ(0)

[
βU

π
(4g2 + g (ξ))

]
+

−ψ(0)

[
βU

π
(4g2 − g (ξ))

]}
, (3.25)
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where ψ(0) are digamma functions and

g (ξ) =

√
(4g2)2 − 2

g1

U
(ξmax − ξ). (3.26)

The critical equation, Eq. (3.25), is the second pivotal point in this analysis. It contains
all information about the system, including explicitly the geometry of the bipartite
lattices, here chosen as two-dimensional square. In the low temperature limit, digamma
functions can be approximated as logarithms, leading to the final form of the critical
line equation:

1 =
1

2π

∫
dξ
ρ (ξ)

g (ξ)
ln

[
4g2 + g (ξ)

4g2 − g (ξ)

]
. (3.27)

Both models, derived and assumed, are analysed and compared in the next section
based on this critical line.

3.4 Results

First of all, we look at the full form of the correlator in Eq. (3.20), to determine the
range of parameters in which the approximation of Eq. (3.24) is valid.

3.4.1 Analytical limits for parameter range

After Mastubara summation and consequent Fourier transform, the phase-phase corre-
lator, Eq. (3.20), can be rewritten as

G (ωm) =
exp c√

2π
b−

a
2
− 1

2 Γ

(
a+ 1

2

)
1F1

(
a+ 1

2
;
1

2
;−ω

2
m

4b

)
, (3.28)
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where

a =
2

8πg2

, (3.29)

b =
π2

24πβ2g2

, (3.30)

c =
2H 4g2β

π

+ 2 ln 2π
β
− π

(4βg2+π)

8πg2

, (3.31)

Γ is the Euler gamma function, 1F1 is the Kummer confluent hypergeometric function,
and Hn is the nth harmonic number.

The correlator is convergent as long as g2 < (8π)−1, which corresponds to an upper
limit on the chemical potential for both versions of g2, Eq. (3.7) and Eq. (3.14). Within
the relevant range of tunnelling parameters t and JDIT , the upper limit is µ/U =(
1 +
√

3
)
/2 ' 1.366. We focus on low-density systems in order to remain beneath

this value. Other properties can also be calculated from the convergence condition,
providing analytical results to compare with the numerical data obtained from the
critical line equation.

This work focuses on low temperatures, T → 0, and low density systems, µ/U <(
1 +
√

3
)
/2, as the essential phenomena take place within this parameter space.

3.4.2 Analytical properties of the full correlator

Within the right range of parameters, especially where the quantum fluctuations are
very strong, the analytical predictions obtained from the full correlator, Eq. (3.28),
shown in Fig. 3.1, fit very well with numerical experiments. The position and value of
the minimum of the normalised hopping can be derived analytically and yields

(
t

U

)value

min

=
1

8
√

3π
√
−2µ2 + 2µ+ 1

∣∣∣∣
4µ+ 1

2µ+ 1

∣∣∣∣ , (3.32)

(
JDIT
U

)position

min

=

√
2

3

√
−2µ2 + 2µ+ 1

2µ+ 1
. (3.33)
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Figure 3.1: Analytical critical line relations. (a): Comparison of the analytical depen-
dence of normalised single hopping t/U on the normalised DIT coefficient JDIT/U at dif-
ferent chemical potentials µ/U , resulting from the critical properties of the phase-phase
correlation function Eq. 3.28. (b): Model versus expansion, Eq. 3.34, at µ/U = 0.2.

The boundaries of the model parameters can be deduced from this minimum. The
chemical potential dependence of the minimum values is shown in Fig. 3.2.

3.4.3 Numerical comparison between the derived and assumed

models

Exemplary critical lines determined by Eq. (3.27), which separate the Mott insulator
(MI) and superfluid (SF) phases of the single particle condensate, are shown in Fig. 3.3.
The proper energy scale of the system must be determined. For comparison purposes,
both nearest-neighbour tunnelling t/U and density-induced tunnelling JDIT/U have
been normalised by the critical value (t/U)crit, which separates the MI and SF phases in
the absence of the extended interaction. The rapid decrease of the normalised hopping
(t/U)N is associated with two mechanisms. The first stems from the low temperature
properties of the phase-phase correlation function in Eq. (3.28). Expanding hopping
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Figure 3.2: Chemical potential dependence of the position (JDIT/U)min and value
(t/U)min of the minimum seen in Fig 3.1, µ/U = 0.2.

around the critical point, we obtain

(t/U)N ' 1− 4
√

2π(4µ/U + 1) (JDIT/U)N +

+ 48π (2µ/U + 1)2 (JDIT/U)2
N +

− 1

2
(48π)2 (2µ/U + 1)4 (JDIT/U)4

N +

+
1

2
(48π)3 (2µ/U + 1)6 (JDIT/U)6

N + . . . (3.34)

The density-induced interaction JDIT both linearly suppresses the hopping amplitude
and supports particle mobility for (t/U)N with larger powers of (JDIT/U)N . As these
two effects interchange with increasing powers of the expansion, this behaviour is easy to
miss without looking at higher order terms before rejecting them. The second decreasing
mechanism stems from the U (1) approach providing complete suppression of particle
mobility; this effect cannot be analytically derived from the critical properties of the Eq.
(3.27). A sudden revival of the coherent phase is also observed. As the density-induced
tunnelling term increases, the quantum fluctuations reestablish long range order within
the system, up until rapid cutoff. At first glance, the results from both models in Fig.
3.3 seem almost identical; the differences clarify themselves in the details.
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Figure 3.3: Comparison of the dependence of normalised single hopping t/U on the nor-
malised DIT coefficient JDIT/U at different chemical potentials µ/U . The critical lines
separate the superfluid (below) and the Mott insulator (above) phases. (a): assumed
model, using g2, Eq. (5.5). (b): derived model, using g′2, Eq. (3.14).

The details of the revival, presented and compared to analytical results in Fig.
3.5, showcase the most important difference between the assumed and derived models.
Although the assumption made in the simplified model about the harmonic coupling
between two condensates is reasonable and provides a qualitatively good description of
the behaviour of the system, it fails to reproduce the disappearance of coherence. It is
worth noting that the quadratic potential so often used to describe coupling between
condensates cannot explain the critical properties of the system, even though the cor-
relation function, Eq. 3.20, has the same form in both approaches. Particle density
is the dominant factor in systems with density-induced tunnelling. The cut-off mini-
mum occurs at the same value of µ/U as the tip of the superfluid–Mott insulator lobe
dominated by the density that locally conserves its integer value. The density-induced
interaction could be expected to depend strongly on the chemical potential. However,
surprisingly, the coherence restored by the density-induced tunnelling behaves non-
monotonically and in opposition to the critical values of the single particle superfluid
of the standard Bose-Hubbard model. The subtlety of the phenomenon should also
be noted: the strongest coherence is not generated by large densities, but rather small
fluctuations thereof. The harmonic coupling model does not provide a valid description
for small densities, being almost constant throughout the relevant range of the chemical
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Figure 3.4: Visualisation of the two parameters analysed in Fig. 3.5.

potential.
The decoherence of the system and the revival of superfluidity are separated by the

gap ∆, shown in Fig. 3.5b which in both models increases monotonically with particle
density. There are no qualitative changes in the gap between both approaches; we
conclude that it does not depend on the character of the coupling, but rather on the
quantum rotor properties of the critical lines themselves.

The importance of chemical potential when density-induced tunnelling is present
led us to analyse the properties of the tunnelling amplitudes relative to density. The
interesting diagram in Fig. 3.6 was derived analytically from the phase-phase correlation
function in Eq. 3.28. Increasing particle density has different effects on the nearest-
neighbour tunnelling t/U and density-induced tunnelling JDIT/U . The single amplitude
t/U counterintuitively decreases monotonically, with a rather steep decent, and finally
goes to zero. In contrast, the DIT stays almost constant, before diverging rapidly
to infinity at high densities. The high-density critical behaviour of both amplitudes
occurs at the same point of µ/U =

(
1 +
√

3
)
/2. These results suggest that in systems

with extended interactions, the chemical potential governs almost all the properties
of the system, both diminishing the coherent state and at the same time supporting
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Figure 3.5: Details of the differences between the derived model (circles, labelled G0) and
the assumed model (triangles, labelled b0). (a): Cutoff values of (JDIT/U)N , compared
to analytics and the first lobe of the zero-temperature square lattice superfluid (above)
– Mott insulator (below) phase diagram (shaded area). (b): Width of gap ∆ before the
revival of superfluidity as a function of chemical potential.
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Figure 3.6: Critical limit of the nearest-neighbour tunnelling and density-induced am-
plitudes, calculated from the critical properties of the phase-phase correlator, Eq. 3.28.

correlated hopping between bosons. The magnitude of both tunnelling amplitudes is

equal at µ/U =
(
1 +
√

7
)
/4 ' 0.91, where (t/U)N = (JDIT/U)N =

√√
7− 5/2 ' 0.38.

That provides the boundary of prepotency of the density-induced interaction.

3.5 Conclusions

The properties of the two kinds of pairing-based dissipation are similar enough to con-
clude that the strange concept of implicit dissipative behaviour might just be grounded
in reality. Not only that: numerical data obtained from the derived model is closer to
generalised analytical results than that of the safer, assumed coupling; this is especially
clear in Fig. 3.5a. There seems to be a wealth of interesting details still waiting to be
discovered and described about the bosonic pair condensate phase.

Our main interest, however, is where the mechanisms of pairing itself might emerge
from in bosonic systems. Therefore, for now, we abandon the deep waters of interaction-
based pairing and resurface to the microscopic level to wonder: since many body corre-
lations clearly play such an important role in the pair condensate, could they themselves
be its source?
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Chapter 4

Correlation-based pairing

The analysis of extended Bose-Hubbard interactions in Chapter 2 confirms that bosonic
pairs condense alongside the single particle Bose-Einstein condensate in the presence
of many body correlations. Knowing that pair condensation is represented in the ef-
fective phase model, Eq. (2.28), by a double cosine or exponential term containing
the double phase difference 2 (φi − φj), we ask what other sources could generate such
terms. Chapter 3 shows that delving deeper into the explicit forms of correlators, while
requiring finesse in choosing the proper approximations, can uncover interactions that
occur in strongly-correlated systems as new, explicit terms in the effective action.

Therefore, in this chapter, we focus on the standard Bose-Hubbard model (BHM)
itself. We know that the Quantum Phase Model, Eq. (1.17), can be derived from
the BHM, Eq. (1.1), as an effective phase model [46, 33]. The trace of the bosonic
correlator is approximated to first order in a series expansion, resulting in linear phase-
phase exponentials. This time, we extend the series expansion of the correlator to
second order, expecting to find double exponentials or double cosines representing pair
condensation, like the interaction-based pairing term in Eq. (2.28) in Chapter 2.

Once again, detailed calculations for this chapter can be found in Appendix C.
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4.1 Model

We start with the standard Bose-Hubbard model, Eq. (1.1):

Ĥ =
U

2

∑

i

n̂i (n̂i − 1)− t
∑

〈i,j〉
â†i âj − µ

∑

i

n̂i, (4.1)

where U > 0 is the on-site repulsion, µ is the chemical potential, and t is the nearest
neighbour exchange integral.

We follow the standard quantum rotor analysis of the BHM [46, 33], up to and
including the integration of bosonic fields. The path integral partition function of the
quantum rotor phase model is much the same as in the density-induced tunnelling
model, Eq. (2.24):

Z =

∫
{Dφ} e−

∑
i

{∫ β
0 dτ

[
1

2U (φ̇i(τ))
2
+ µ̄
iU
φ̇i(τ)

]
+Tr lnG−1

}
, (4.2)

but in this case, the shifted chemical potential is

µ̄ = µ+
U

2
(4.3)

and the Green’s function, G, is a scalar:

G−1 = G−1
0 − Tij = G−1

0 (1− TijG0) , (4.4)

with phase-phase correlator

G−1
0 =

(
∂

∂τ
+ µ̄

)
δij (4.5)

and the single-particle nearest neighbour exchange term

Tij = tije
−i(φi(τ)−φj(τ)). (4.6)

In order to preserve the pair condensation term, the trace Tr lnG−1 in Eq. (4.2) is
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approximated to second order:

Tr lnG−1 = −Tr lnG0 − Tr (TijG0)− 1

2
Tr (TijG0)2 . (4.7)

We assume G0 to be a sum of two components. The first component is the bosonic
amplitude b2

0. In the quantum rotor approach, b0 is constant on every site, as all dynam-
ics are contained within the phase. We obtain b2

0 by minimising the BHM Hamiltonian,
Eq. (4.1), in terms of the bosonic amplitude b0,

∂

∂b0

Ĥ (b0) = 0, (4.8)

which leads to

b2
0 =

2 (zt+ µ̄)

U
. (4.9)

The second component of G0 is the imaginary time-dependent form in Eq. (4.5)
itself, which can be Matsubara transformed into

G0 =
1

β

∑

n

−iωn + µ̄

ω2
n + µ̄2

. (4.10)

By adding the two values in Eqs. (4.9,4.10) together, we obtain an effective phase model
approximated from above.

4.2 Effective phase model

The transformations lead to the same effective phase action with pairing obtained from
the density-induced tunnelling BHM in Chapter 2, Eq. (2.28):

S [φ] =

∫ β

0

dτ
1

U

∑

i

(
∂φi
∂τ

)2

+

∫ β

0

dτ


−J

∑

〈i,j〉
cosφij − J

′∑

〈i,j〉
cos 2φij


 . (4.11)
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The coefficients are much different, however. The single particle condensation coefficient
is much the same as in the standard Bose-Hubbard model case [46],

J

t
=

2
(
zt+ U

2
+ µ
)

U
, (4.12)

and the pair condensation coefficient, after summing Gn in Eq. (4.10) over Matsubara
frequencies, is

J
′

t
=

t

U

[
2
(
zt+ U

2
+ µ
)

U

]2

+
t

U

z

2 sinh2

[
β(U2 +µ)

2

] . (4.13)

Much like in the extended interaction case, Eq. (2.31), two different condensates,
single-particle and pair, are generated by the two cosine terms in Eq. (4.11). This
time, the pairing mechanism does not stem from many body interactions, but from
many body correlations implicit within the standard Bose-Hubbard model.

We change the methodology in further calculations, making use of the self-consistent
harmonic approximation rather than the S = 1 pseudospin mapping used for the
interaction-based pairing in Chapter 2. Since this mechanism stems from correlations,
the reasoning behind the change of strategy is to better preserve correlations within the
condensate phases. Both pair condensates are later compared under uniform approxi-
mations and conditions in Chapter 5.

4.2.1 Self-consistent harmonic approximation

We solve the phase model in the self-consistent harmonic approximation (SCHA), shown
in Section 1.2.3. The method is based on the harmonic trial action,

S0 [φ] =

∫ β

0

dτ


 1

U

∑

i

(
∂φi
∂τ

)2

+
K

2

∑

〈i,j〉
φ2
ij


 . (4.14)
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The self-consistent equation for the trial stiffness, K, is obtained from the variational
principle for free energy, Eq. (1.34), and takes the form of

K = Je−
1
2〈φ2

ij〉 + 4J
′
e−2〈φ2

ij〉, (4.15)

where the trial nearest neighbour phase average, Eq. (1.36),

〈
φ2
ij

〉
=

1

z

∫
dξ ρ (ξ)

√
(z − ξ)U

2K
coth

(
β

2

√
(z − ξ)KU

2

)
, (4.16)

is determined with use of the density of states function,

ρ (ξ) =
1

N

∑

k

δ (ξ − ξk) . (4.17)

The order parameters in the self-consistent harmonic approximation are defined as
in Eqs. (1.37-1.39),

Ψ1 = 〈cosφi〉 = e−
1
2〈φ2

i 〉, (4.18)

Ψ2 = 〈cos 2φi〉 = e−2〈φ2
i 〉, (4.19)

where the trial on-site phase average is as in Eq. (1.39),

〈
φ2
i

〉
=

1

2

∫
dξ ρ (ξ)

√
U

K (z − ξ) coth

(
β

2

√
(z − ξ)KU

)
. (4.20)

The phase model, Eq. (4.11), is thus replaced with a harmonic oscillator with
the effective phase action in Eq. (4.14). The stiffness K is calculated from the self-
consistent equation and depends on the condensate coefficients, J in Eq. (4.12) and J ′

in Eq. (4.13). Thermodynamic functions can be derived from the trial free energy, F0,
in Eq. (1.30).
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4.3 Thermodynamics of the effective model

Order parameter diagrams are shown in Fig. 4.1 in various magnetic fields, with set
parameters of t/U = 0.085 and µ/U = 1.5. The two upper diagrams, Figs. 4.1a
and 4.1b, show how the single particle order parameter Ψ1 behaves with and without
bosonic pairing. An increase in the critical temperature TC can be observed in all cases.
Of particular interest is how the lines shift with respect to one another as the rotation
frustration parameter f is changed. In Fig. 4.1a, without the pairing mechanism, Ψ1

behaves almost identically at f = 1/2 and f = 1/4, with the same TC . When pairing
is added in Fig. 4.1b, however, the critical temperatures separate; the f = 1/4 line
moves closer to f = 1/6. This suggests competition between the density of states
(DOS) bandwidth and the van Hove singularities within the functions, which shifts as
the pairing term is added. The DOS caps at ξmax = 2

√
2 for both f = 1/2 and f = 1/4,

but the latter is far less continuous.

The pair order parameters Ψ2 in Fig. 4.1c are peculiar: they very gradually decrease
to zero, rather than the usual sudden, right angle drop. Furthermore, TC is always lower
for Ψ2 than for Ψ1. Due to those factors, TC will from now on refer to the single particle
critical temperature specifically.

Fig. 4.2 shows entropy diagrams with and without pair condensation, ordered by
magnetic field. The pair condensate strengthens the single condensate phase, meaning
the superfluid survives in higher temperatures [34]. The strengthening effect on TC

varies depending on f , with the increase being smallest at f = 1/2, as seen in Fig. 4.2b.
Once again, this has to do with the shift of the balance between the DOS bandwidths
and continuity. The red lines of the non-pairing effective model are very similar at
f = 1/2 and f = 1/4. When pairing is included, however, there is more similarity
between the blue lines at f = 1/4 and f = 1/6.

The lack of peaks in the blue lines before cutoff mirrors the slow descent of Ψ2. The
effect of bosonic pairing is much more pronounced within the condensate phase itself,
as seen in the blue shaded areas between the lines. Entropy provides information about
order. The decrease in entropy as pair condensation is added, which occurs in every
single case, emphasises the ordering effect the pairing mechanism has on the system.
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Figure 4.1: Temperature dependence of single particle Ψ1 and pair Ψ2 order parameters
in magnetic fields (t/U = 0.085). (a): Ψ1 without pair condensation; (b): Ψ1 with pair
condensation; (c): Ψ2 with pair condensation.
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Every line in Fig. 4.2 cuts off abruptly at the respective Ψ1 critical temperature.
These cutoffs signify where the condensate–normal phase transitions occur. The cutoff
is a consequence of the self-consistent harmonic approximation, which cannot reproduce
the structure of the critical region. The SCHA preserves specific correlations within
the condensate phase and therefore can be reliably used to study the thermodynamics
thereof, in the regions where Ψ1,Ψ2 6= 0. However, the ordering of the system is different
in the normal phase and cannot be recreated using the same parameters. While this
method cannot reproduce what happens near or beyond the critical point, the critical
temperature TC is determined by the cutoff point.
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Figure 4.2: Comparison of entropy as a function of temperature with and without bosonic
pair condensation in various magnetic fields (t/U = 0.085). Red lines depict single
particle condensation only; blue lines represent the model with pair condensation. (a):
f = 0; (b): f = 1/2; (c): f = 1/4; (d): f = 1/6.
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4.4 Conclusions

We have confirmed in this chapter that strongly correlated bosons form pairs of their
own accord even without the presence of extended interactions, such as density-induced
tunnelling. Correlators in the path integral formulation contain a wealth of information,
which is usually approximated to first order to focus on the largest contributions. As it
turns out, bosonic pairing is one of the processes that occur just beyond this standard
boundary; all that was needed for a pair condensate to emerge was considering the
single largest term which is usually ignored. This emphasises the importance of many
body correlations, including in systems forced into simple interactions [12, 11].

As density-induced tunnelling is a first-order approximation to the Bose-Hubbard
model, the interaction-based pairing mechanism derived in Chapter 2 might be easier
to detect experimentally. It probably also affects the single particle condensate in a
more significant way, especially as the density-induced amplitude is increased. The
next logical step is to compare both the derived pair condensates, interaction-based
and correlation-based, using a uniform set of approximations, to see what is similar
and what different between the two.
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Chapter 5

Comparison of pairing mechanisms

In previous chapters, we have derived and analysed two bosonic pairing mechanisms,
for which the effective phase models are the same but their coefficients are not. We
conclude this work by mapping the similarities and differences in how the two pair
condensates with very different sources affect the single particle condensate.

In path integral studies, the model must narrowed down to fit chosen areas of
interest, within specific parameter ranges and limits. Different methods allow access to
various information, with differing reliability. Two separate approaches to a single model
might even lead to disagreeing results. In order to compare the two derived pairing
mechanisms, the methods and approximations used for thermodynamic analysis must
be synchronised. Our interest lies in what happens within the condensate phase itself,
rather than thermodynamics beyond the critical region. Therefore, in this chapter,
we make use of the self-consistent harmonic approximation, preserving the correlations
responsible for bosonic condensation.
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5.1 Effective phase models

The effective phase model remains the same as in previous chapters, Eqs. (2.31,3.1,4.11):

S [φ] =

∫ β

0

dτ
1

U

∑

i

(
∂φi
∂τ

)2

+

∫ β

0

dτ


−J

∑

〈i,j〉
cosφij − J

′∑

〈i,j〉
cos 2φij


 . (5.1)

This time, we consider both of the pairing mechanisms derived in Chapters 2 and 4,
which differ only by their single and pair coefficients. To easily distinguish between the
two models, we rename them for this chapter as JC , J

′
C in the correlation-based model

and JI , J
′
I in the interaction-based model.

5.1.1 Correlation-based coefficients

The first version of the model is based on the standard Bose-Hubbard model (BHM),
as derived in Chapter 4. The correlation-based single and pair condensation coefficients
are as in Eqs. (4.12,4.13):

JC
t

=
2
(
zt+ U

2
+ µ
)

U
, (5.2)

J
′
C

t
=

t

U

[
2
(
zt+ U

2
+ µ
)

U

]2

+
t

U

z

2 sinh2

[
β(U2 +µ)

2

] , (5.3)

where µ is the chemical potential, tij = t is the nearest neighbour exchange integral, U
is the on-site interaction between two particles and β is the inverse of the temperature.

5.1.2 Interation-based coefficients

In the interaction-based model, derived in Chapter 2, the pairing mechanism stems from
the density-induced interaction with amplitude JDIT . Here, the single condensation
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coefficient, Eq. (2.29), is the one dependent on temperature:

JI
t

=
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

[
2 (t− 2JDIT ) +

8µ̄

U
JDIT

]
+

+

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
64µ̄

U2
J3
DIT +

16

U
(t− 2JDIT ) J2

DIT

]

×
{

2

[
coth

(
−βµ

2

)
+ coth

(
β (µ+ U)

2

)]
+ 1

}
, (5.4)

and the pair coefficient, Eq. (2.30), is

J
′
I

t
=

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

×
[

(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT

]
, (5.5)

where the shifted chemical potential, Eq. (2.5), also depends on the density-induced
amplitude JDIT ,

µ̄ =
U

2
+ µ− 2JDIT . (5.6)

The self-consistent harmonic approximation (SCHA) does not rely on the coefficients
J and J ′ , therefore the calculations are carried out exactly the same as in Section 4.2.1.
The self-consistent equation for the critical line, as derived in Section 4.2.1, Eq. (4.15),
is

K = Je−
1
2〈φ2

ij〉 + 4J
′
e−2〈φ2

ij〉, (5.7)

where the trial phase average, Eq. (4.16), is

〈
φ2
ij

〉
=

1

z

∫
dξ ρ (ξ)

√
(z − ξ)U

2K
coth

(
β

2

√
(z − ξ)KU

2

)
. (5.8)
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Both models, with correlation-based and interaction-based pairing mechanisms, are
compared in the next section within the same BHM parameters: chemical potential µ/U
and hopping t/U , at differing values of the density-induced amplitude JDIT . Orbital
magnetic effects are also introduced into the trial phase average,

〈
ϕ2
ij

〉
, via density of

states, keeping in mind that the phase shift, Eq. (1.55), is effectively different in the
pair condensate case by a factor of 2, as mentioned in Section 1.3.1.

5.2 Results

Firstly, chosen properties of the single and pair coefficients are shown in Fig. 5.1.
Fig. 5.1a shows the dependence of both interaction-based coefficients, the single JI in
Eq. (5.4) and the pair J ′I in Eq. (5.5), on the density-induced tunnelling amplitude
JDIT/U . Areas where a coefficient is positive determine the parameter ranges in which
their respective phase can be detected. As expected, both phases occur at low values of
the density-induced amplitude, as up to JDIT/U ≈ 0.0314, both JI and J

′
I are positive.

As JDIT/U increases, we observe areas where one coefficient is positive and the other
negative, meaning either single particle or pair condensation can occur, but not both
simultaneously. We focus on the most interesting rage of JDIT/U < 0.03, in which both
condensates are able to coexist.

In both models, only one of the two condensate coefficients depends on temperature.
In the correlation-based model, it is the pair amplitude: J ′C = f (β). The interaction-
based model is the opposite: JI = f (β). The temperature dependence of the relevant
coefficients is shown in Fig. 5.1c. It is clear that the interaction-based single condensate
almost doesn’t react to changes in temperature. The pair coefficient in the correlation-
based model is much more sensitive. That being said, the scale in which substantial
changes occur is much larger than the critical temperatures obtained in this section.

Exemplary diagrams of the dependence on temperature of the single particle and
pair order parameters, Ψ1 and Ψ2 respectively, are shown in Fig. 5.2 in the absence
of magnetic fields, where the rotation frustration parameter f = 0. Additionally, Fig.
5.3 shows the difference between single particle and pair critical temperatures, ∆crit =

TC1 − TC2 , in different magnetic fields and at two different values of the single hopping
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Figure 5.1: Properties of single and pair coefficients. (a): Interaction-based condensate
coefficients as functions of the density-induced tunnelling amplitude JDIT/U . (b): As
above, magnified for low values of JDIT/U , showing the asymptote in J which determines
the parameter range of this work. (c): Temperature dependence of the two temperature-
driven condensate coefficients: the correlation-based pair J ′ and the interaction-based
single particle J at two different density-induced interaction JDIT/U values.
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Figure 5.2: Comparison of temperature dependence of single particle and pair order
parameters (µ/U = 0.45). (a): single particle order parameter, Ψ1; (b): pair order pa-
rameter, Ψ2. Superscript ()C denotes correlation-based pairing; superscript ()I denotes
interaction-based pairing, driven by density-induced tunnelling JDIT . (t/U = 0.045,
µ/U = 0.45)

t/U . Interpolations of ∆crit are also included, to further clarify how the difference
changes with the rotation frustration parameter f . As opposed to the pseudospin
mapping analysis for interaction-based pairing, here the pair condensate fades out slowly
and the pair critical temperature is consistently lower than for the single condensate,
TC2 < TC1 .

Specific heat diagrams for both models under varying synthetic magnetic fields are
shown in Fig. 5.4. In the interaction-based model, the critical lambda-shaped peaks
clearly degenerate as the density-induced coefficient JDIT increases towards the critical
value. In both cases, specific heat flattens out in the presence of magnetic fields,
but at the same time the critical temperature increases. The self-consistent harmonic
approximation becomes unreliable in the vicinity of the critical point; this is especially
pronounced in the red lines of the correlation-based model, where the specific heat cC
seems to increase ever faster, without reaching saturation. The diagrams are sorted
by rotation frustration parameter f , to compare the two models in specific external
conditions. As temperature increases, it becomes steadily easier to distinguish between
specific heat generated by correlation-based pairing (red lines) and interaction-based
pairing (blue lines). The two models also differ in the temperature at which the specific
heat starts to increase substantially. In the correlation-based model, there is very little
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Figure 5.3: ∆crit = Tc1 − Tc2 as a function of rotation frustration parameter f . Super-
script ()C denotes correlation-based pairing; superscript ()I denotes interaction-based
pairing, driven by density-induced tunnelling JDIT . Right side diagrams are interpola-
tions of the data on the left. (a): t/U = 0.045; (b): t/U = 0.075.
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Figure 5.4: Specific heat as a function of temperature in various magnetic fields (t/U =
0.045, µ/U = 0.45). (a): f = 0; (b): f = 1/2; (c): f = 1/4; (d): f = 1/6.

variety, but the interaction-based point of emergence shifts towards higher temperatures
as JDIT is increased. The difference between models is also pronounced in how they
react to orbital magnetic effects. This distinction is explored in more detail in Fig. 5.5,
in the difference ∆c = cC− cI between the correlation-based (cC) and interaction-based
(cI) specific heat at discrete values of temperature and in various magnetic fields.

A basic comparison of specific heat diagrams is shown in Fig. 5.6 at t/U = 0.045.
The two models are presented along with the Standard Phase Model without pairing,
the effective action of which is

S [φ] =

∫ β

0

dτ


 1

U

∑

i

(
∂φi
∂τ

)2

− JSPM
∑

〈i,j〉
cosφij


 , (5.9)
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Figure 5.5: Difference ∆c = cC − cI between the correlation-based (cC) and interaction-
based (cI) specific heat in chosen temperatures at low density-induced amplitude,
JDIT/U = 0.001.

where

JSPM
t

=
2
(
zt+ U

2
+ µ
)

U
=
JC
t
. (5.10)

Compared to the gray line of the Standard Phase Model, the correlation-based specific
heat is marginally steeper, but very similar in terms of area, with a slight increase in
critical temperature. Interestingly enough, the comparison is very different for the blue
lines, representing the interaction-based specific heat. The interaction-based critical
temperature increases substantially, but the line now also forms a hump, which is more
reminiscent of standard specific heat behaviour.

5.3 Conclusions

Since the behaviour of bosons does not depend as strongly on spin as in the case of
fermions, it is easier in the path integral formulation to find terms containing four
bosonic field operators and connect those terms to the phenomenon of pairing. This
work presents two different mechanisms that lead to the emergence of a new phase, sep-
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Figure 5.6: Specific heat as a function of temperature with correlation-based and
interaction-based pairing, compared with the standard phase model without a pairing
term at t/U = 0.045 and µ/U = 0.45.

arate from but interacting with the well known single particle Bose-Einstein condensate
(BEC). The effective phase model in both cases corresponds to an extended Quantum
Phase Model (QPM) with two cosine condensation terms, Eq. (5.1), which is usually
assumed with arbitrary contant coefficients. In our case, however, both coefficients are
explicitly derived and depend on the parameters of the original, microscopic model. The
two condensate phases therefore must interact and influence each other. Regardless of
its source or the methods used, the presence of bosonic pairing consistently strengthens
the BEC in the considered range of parameters.

5.3.1 Self-consistent harmonic approximation vs. S = 1 pseu-

dospin

We have seen the similarities and differences between the two derived pairing mecha-
nisms, correlation-based and interaction-based, under the self-consistent harmonic ap-
proximation (SCHA). We have seen also the strengths and the limits of the SCHA,
and understand the impossibility of finding a single method within the path integral
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formulation that would accurately depict the entirety of a system under any chosen
conditions. This is especially clear in the interaction-based pair fraction, which under
the S = 1 pseudospin mean field (MF) survives at higher temperatures than the single
particle condensate TC1 and produces a clear λ-shaped peak in the specific heat, but
under the SCHA decays slowly and always before TC1 is reached. It is therefore worth
checking what information can be retrieved using the S = 1 pseudospin mapping from
the correlation-based model.

To that end, additional order parameter diagrams of the model with correlation-
based pairing under the S = 1 pseudospin approximation are shown in Fig. 5.7.
The approximation was carried out exactly as in Section 2.2, with only the coeffi-
cients exchanged from the interaction-based Eqs. (5.4,5.5) to the correlation-based Eqs.
(5.2,5.3). The normalisation parameter here is the single particle hopping t rather than
the on-site interaction U , therefore the parameter values are much higher. Regardless,
no separation has been found between the single and pair condensate phases.
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Figure 5.7: Temperature dependence of single particle Ψ and pair Ψ2 order parameters
at different values of µ/t and constant on-site interation U .

The pseudospin mapping is based on a mean field approximation. All this sug-
gests that the SCHA, which does not rely on MF methods, might be better suited to
reproducing critical temperature TC behaviour. On the other hand, the pseudospin
mapping preserves energy fluctiations sufficiently to both obtain the λ-shaped peaks in
the specific heat c that signify quantum phase transitions and reproduce the behaviour
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of c beyond the superfluid phase, whereas the condensate-localised SCHA struggles es-
pecially with the latter. Another important factor is the dependence of the single or
pair condensate coefficients on temperature, or imaginary time, which is different in
the interaction-based and correlation-based pairing models and might also contribute
to the TC differences.

It is always worth remembering that information obtainable from approximations is
only relevant in a narrow range of conditions and does not provide a full picture of the
properties of the model one starts with. As such, different methods and approximations
can reproduce different correlations. Results acquired from two separate approaches
might correspond or complement one another, but might also turn out contradicting.
Obviously, in such cases, experiments are a reliable means of verification.
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Appendix A

Interaction-based pairing: calculations

The Hamiltonian of the Bose-Hubbard model with density-induced tunnelling, Eq.
(2.1), is:

Ĥ =
U

2

∑

i

n̂i (n̂i − 1)− 1

2

∑

〈i,j〉
tij

(
â†i âj + â†j âi

)
− µ

∑

i

n̂i+

− JDIT
∑

〈i,j〉

[
â†i (n̂i + n̂j) âj + â†j (n̂i + n̂j) âi

]
, (A.1)

where 〈i, j〉 identifies a summation over nearest neighbouring sites and:

• â†i , âi are the bosonic coherent creation and annihilation operators, respectively;
they obey the canonical commutation relation,

[
âi, â

†
j

]
= δij;

• n̂i = â†i âi is the boson number operator on site i;

• U > 0 is the on-site repulsion;

• µ is the chemical potential;

• JDIT is the density-induced tunnelling amplitude ,
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• tij is the hopping integral, the dispersion of which on a bipartite lattice in d

dimensions is

t (k) = 2t
d∑

l=1

cos kl. (A.2)

We assume that hopping is isotropic, tij = t, throughout the entire lattice.

First of all, we rewrite the Hamiltonian to resemble the standard Bose-Hubbard model,
Eq. (1.1). This can be done by appending the density-induced term to either the
exchange integral, as in [39], or the chemical potential [34].

Commutation relations needed for the density term:

[
n̂i, â

†
j

]
=
[
â†i âi, â

†
j

]
= â†i âiâ

†
j − â†j â†i âi = â†i

(
â†j âi + δij

)
− â†j â†i âi = â†iδij, (A.3)

[n̂i, âj] =
[
â†i âi, âj

]
= â†i âiâj − âj â†i âi = â†i âiâj −

(
â†i âj + δij

)
âi = −âiδij. (A.4)

Transforming the operators in the density-induced term in Eq. (A.1):

â†i (n̂i + n̂j) âj + c.c. =â†i n̂iâj + â†i n̂j âj + â†jn̂iâi + â†jn̂j âi (A.5)

=â†i (âjn̂i − âiδij) + â†i (âjn̂j − âj) +

+ â†j (âin̂i − âi) + â†j (âin̂j − âjδij) (A.6)

=â†i âjn̂i − â†i âiδij + â†i âjn̂j − â†i âj+
+ â†j âin̂i − â†j âi + â†j âin̂j − â†j âjδij (A.7)

=â†i âjn̂i + â†i âjn̂j + â†j âin̂i + â†j âin̂j+

−
(
â†i âj + â†j âi

)
−
(
â†i âi + â†j âj

)
δij (A.8)

=
(
â†i âj + â†j âi

)
(n̂i + n̂j − 1)−

(
â†i âiδij + â†j âjδij

)
. (A.9)

The Hamiltonian in Eq. (A.1) then takes the form
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Ĥ =
∑

i

[
U

2
n̂2
i −

(
U

2
+ µ

)
n̂i

]
− 1

2
t
∑

〈i,j〉

(
â†i âj + â†j âi

)
+

− JDIT
∑

〈i,j〉

[(
â†i âj + â†j âi

)
(n̂i + n̂j − 1)−

(
â†i âiδij + â†j âjδij

)]
(A.10)

=
∑

i

[
U

2
n̂2
i −

(
U

2
+ µ− 2T

)
n̂i

]
+

−
∑

〈i,j〉

[
â†i âj

(
1

2
t+ T (n̂i + n̂j − 1)

)
+ â†j âi

(
1

2
t+ T (n̂i + n̂j − 1)

)]
. (A.11)

Rewriting further and including , the DIT term can be appended either to the
hopping:

ĤJ =
∑

i

U

2
n̂2
i −

∑

i

(
U

2
+ µ− 2JDIT

)
n̂i −

∑

〈i,j〉
â†i âj (t+ 4JDIT n̂i − 2JDIT ) , (A.12)

or to the chemical potential:

Ĥ =
∑

i

U

2
n̂2
i −

∑

〈i,j〉
(t− 2JDIT ) â†i âj+

−
∑

〈i,j〉

[
4JDIT â

†
i âj +

(
U

2
+ µ− 2JDIT

)
δij

]
n̂i. (A.13)

We choose the chemical potential version, Eq. (A.13). By denoting

J = t− 2JDIT , (A.14)

µ̄ =
U

2
+ µ− 2JDIT , (A.15)

and
ˆ̃µij =

U

2
+ µ− 2JDIT + 4JDIT â

†
i âj = µ̄+ 4JDIT â

†
i âj, (A.16)
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we can simplify the Hamiltonian to a standard Bose-Hubbard form, Eq. (2.2):

Ĥ =
U

2

∑

i

n̂2
i − J

∑

〈i,j〉
â†i âj −

∑

〈i,j〉

ˆ̃µijn̂i. (A.17)

We are now ready to move on to path integrals.

A.1 Quantum rotor derivation

The effective action formulation is scale invariant, so constant multiplicators in the
partition function have no bearing on the effective model. As the bosonic operators â†i , âi
transform into complex fields āi, ai in the coherent state basis, the partition function is
as in Eq. (1.12):

Z =

∫
{DāDa} e−S[ā,a], (A.18)

where the effective action S, Eq. (1.13), contains the complex field form H of the
Hamiltonian from Eq. (A.17):

S [ā, a] =

∫ β

0

dτ

(∑

i

āi (τ)
∂

∂τ
ai (τ) +H (τ)

)
, (A.19)

H (τ) =
U

2

∑

i

n2
i − J

∑

〈i,j〉
āiaj −

∑

〈i,j〉
µ̃ijni. (A.20)

The first step is introducing the effective electrochemical potential V as part of the
Hubbard-Stratonovich transformation, Eq. (1.14), which decouples the U -dependent
interaction term:

e−
U
2

∑
i

∫
dτ n2

i (τ) =

∫
dV

2π
e
−∑i

∫
dτ

(
V 2
i (τ)

2U
−iVi(τ)ni(τ)

)
. (A.21)
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The effective action terms containing V can be separated within the partition function:

Z =

∫
{DāDa} e−Sb[ā,a]

∫
dV

2π
e−SV [n,V ], (A.22)

with bosonic effective action

Sb =

∫ β

0

dτ


∑

i

āi (τ)
∂

∂τ
ai (τ)− J

∑

〈i,j〉
āi (τ) aj (τ)


 (A.23)

and electrochemical effective action

SV =

∫ β

0

dτ


∑

i

(
1

2U
V 2
i (τ)− iVi (τ)ni (τ)

)
−
∑

〈i,j〉
µ̃ijni (τ)


 . (A.24)

Shifting the electrochemical potential Vi (τ) = V T
i (τ)− µ̃ij

i
:

SV =

∫ β

0

dτ




∑

i

[
1

2U

(
V T
i (τ)

)2 − µ̃ij
iU
V T
i (τ)− iV T

i (τ)ni (τ)

]
−
∑

〈i,j〉

µ̃2
ij

2U



 . (A.25)

At this point, the first phase dependence is introduced: we split the shifted potential
V T
i into static and periodic parts in terms of Matsubara frequency:

V T
i (τ) = V S

i (τ) + V P
i (τ) , (A.26)

V S
i (τ) =

1

β
V T
i (ωm=0) , (A.27)

V P
i (τ) =

1

β

+∞∑

m=1

(
V T
i (ωm) eiωmτ + c.c.

)
, (A.28)

where the periodic part of the electrochemical potential is Josephson coupled to a U(1)

phase field φ (τ):
V P
i = φ̇i (τ) . (A.29)
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The periodicity of V P carries on to the phase field, meaning φi (β) = φi (0).

The chemical potential term is expanded using Eq. (A.16):

∫ β

0

dτ
∑

〈i,j〉

µ̃2
ij

2U
=

1

2U

∫ β

0

dτ
∑

〈i,j〉
[µ̄+ 4JDIT āi (τ) aj (τ)]2 (A.30)

=
1

2U

∫ β

0

dτ
∑

〈i,j〉

{
µ̄2 + 16J2

DIT [āi (τ) aj (τ)]2
}

+

+
1

2U

∫ β

0

dτ
∑

〈i,j〉
8µ̄JDIT āi (τ) aj (τ) (A.31)

=

∫ β

0

dτ
∑

〈i,j〉

{
µ̄2

2U
+

8

U
J2
DIT [āi (τ) aj (τ)]2

}
+

+

∫ β

0

dτ
∑

〈i,j〉

4µ̄

U
JDIT āi (τ) aj (τ) . (A.32)

The partition function in Eq. (A.22) now also contains a phase action term, Sφ:

Z =

∫
{DāDa} e−Sb[ā,a]

∫
dV S

2π
e−SS[n,V S]

∫
{Dφ} e−Sφ[n,φ̇], (A.33)

where

Sb =

∫ β

0

dτ


∑

i

āi (τ)
∂

∂τ
ai (τ)−

(
J +

4µ̄

U
JDIT

)∑

〈i,j〉
āi (τ) aj (τ)


+

−
∫ β

0

dτ
∑

〈i,j〉

8

U
J2
DIT [āi (τ) aj (τ)]2 , (A.34)

SV =
∑

i

[
β

2U

(
V S
i

)2
+

∫ β

0

dτ

(
− µ̄

2

2U
− µ̃

iU
V S
i − iV S

i ni (τ)

)]
, (A.35)

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̃

iU
φ̇i (τ)− iφ̇i (τ)ni (τ)

]
. (A.36)

Constant terms do not contribute to the critical line equation due to scale invariance.
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Replacing V S with a constant average at saddlepoint and noting that

∫ β

0

dτ ni (τ) = 〈ni〉 , (A.37)

most terms in the static potential part of the action, SV , are indeed constant. The
diagonal chemical potential dependence can be appended to the bosonic action Sb:

Sb =

∫ β

0

dτ


∑

i

āi (τ)

(
∂

∂τ
+ µ̄

)
ai (τ)−

(
J +

4µ̄

U
JDIT

)∑

〈i,j〉
āi (τ) aj (τ)


+

−
∫ β

0

dτ
∑

〈i,j〉

8

U
J2
DIT [āi (τ) aj (τ)]2 , (A.38)

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̃

iU
φ̇i (τ)− iφ̇i (τ)ni (τ)

]
. (A.39)

At this point, the effective action contains only terms dependent either on phase or
on bosonic fields.

A.1.1 Gauge transformation

In order to obtain a phase-only model, we perform a gauge transformation, Eq. (1.15),
on the bosonic fields, separating amplitude and phase:

ai (τ) = eiφi(τ)bi (τ) , (A.40)

āi (τ) = e−iφi(τ)b̄i (τ) . (A.41)

The partition function has two effective action terms, one bosonic and one phase-
dependent, as shown in Eq. (2.6):

Z =

∫ {
Db̄Db

}∫
{Dφ} e−Sb[b̄,b]e−Sφ[n,φ̇], (A.42)
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where the bosonic terms are also phase-dependent now, with

Sb =
∑

〈i,j〉

∫ β

0

dτ b̄i (τ)

[
δij

(
∂

∂τ
+ µ̄

)
− Je−iφij(τ) − 4µ̄JDIT

U
e−iφij(τ)

]
bj (τ) +

−
∑

〈i,j〉

∫ β

0

dτ
8

U
J2
DIT e

−i2φij(τ)
[
b̄i (τ) bj (τ)

]2
, (A.43)

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̃

iU
φ̇i (τ)

]
. (A.44)

The next step is integrating out the bosonic fields to obtain a phase-only model.
To that end, the quadruple term can be split into multiple bilinear terms with use of
Wick’s theorem. In the Fermi-Hubbard model, the interaction term is split as follows:

U
∑

i

f †i↑f
†
i↓fi↓fi↑ '

∑

i

∆if
†
i↑f
†
i↓ +

∑

i

∆∗i fi↑fi↓ +
∑

i

Wi↓f
†
i↑fi↑+

+
∑

i

Wi↑f
†
i↓fi↓ −

∑

i

Vif
†
i↑fi↓ −

∑

i

V ∗i f
†
i↓fi↑, (A.45)

where

∆i = U 〈fi↓fi↑〉 , (A.46)

Wiσ = U
〈
f †iσfiσ

〉
, (A.47)

Vi = U
〈
f †i↓fi↑

〉
. (A.48)

The bosonic case is simpler; neglecting spin, we have Eq. (2.12),

∑

〈i,j〉
b†ib
†
ibjbj '

∑

〈i,j〉

[
〈bjbj〉 b†ib†i +

〈
b†ib
†
i

〉
bjbj +

(
4
〈
b†ibj
〉

+ δij

)
b†ibj
]
. (A.49)

At this point, the bosonic field terms in the partition function can be brought
together as the Gaussian integral in Eq. (2.14),
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I =

∫ {
Db̄iDbi

}
exp



−

∫ β

0

dτ
∑

〈i,j〉

[
b̄i (τ)Sijbj (τ)−∆j b̄ib̄i − ∆̄ibjbj

]


 (A.50)

=

∫ {
Db̄iDbi

}
exp {−Seff} , (A.51)

where

Sij =δij

(
∂

∂τ
+ µ̄

)
− Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ)+

− 8

U
J2
DIT e

−i2φij(τ) ·
(
4
〈
b̄ibj
〉

+ δij
)
, (A.52)

∆i =− 8

U
J2
DIT e

−i2φij(τ) 〈bibi〉 , (A.53)

∆̄i =− 8

U
J2
DIT e

−i2φij(τ)
〈
b̄ib̄i
〉
. (A.54)

At this point, the bosonic terms are quadratic and therefore prepared for Gaussian
integration.

A.1.2 Nambu-like matrix form

In order to carry out the integration, we rewrite Seff in matrix form, creating a Nambu-
like space. The elements of this bosonic effective action matrix have to be determined:
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Seff =
(
b̄i bi b̄j bj

)




A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4







bi

b̄i

bj

b̄j




(A.55)

=
(
b̄i bi b̄j bj

)




A1bi + A2b̄i + A3bj + A4b̄j

B1bi +B2b̄i +B3bj +B4b̄j

C1bi + C2b̄i + C3bj + C4b̄j

D1bi +D2b̄i +D3bj +D4b̄j




(A.56)

= A1b̄ibi + A2b̄ib̄i + A3b̄ibj + A4b̄ib̄j +B1bibi +B2b̄ibi+

+B3bjbi +B4b̄jbi + C1b̄jbi + C2b̄j b̄i + C3b̄jbj + C4b̄j b̄j+

+D1bibj +D2b̄ibj +D3bjbj +D4b̄jbj. (A.57)

The coefficients are:

A1 = 0, B1 =
1

2
δij∆̄i, C1 = 0, D1 = 0, (A.58)

A2 =
1

2
δij∆i, B2 = 0, C2 = 0, D2 =

1

2
Sij, (A.59)

A3 =
1

2
Sij, B3 = 0, C3 = 0, D3 =

1

2
δij∆̄i, (A.60)

A4 = 0; B4 = 0; C4 =
1

2
δij∆̄i; D4 = 0. (A.61)

The effective action can then be written as the matrix product in Eq. (2.20):

Seff = B̄ΓB, (A.62)
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where the bosonic Nambu-like vectors are defined as

B =




bi

b̄i

bj

b̄j



, (A.63)

B̄ =
(
b̄i bi b̄j bj

)
, (A.64)

and the correlation matrix is

Γ =




0 1
2
δij∆i

1
2
Sij 0

1
2
δij∆̄i 0 0 0

0 0 0 1
2
δij∆i

0 1
2
Sij

1
2
δij∆̄i 0



. (A.65)

The next step is diagonalising Γ, the eigenvalues of which are:

Γ11 = −1

2

√
∆̄i∆i − Sij

√
∆̄i∆i, (A.66)

Γ22 =
1

2

√
∆̄i∆i − Sij

√
∆̄i∆i, (A.67)

Γ33 = −1

2

√
∆̄i∆i + Sij

√
∆̄i∆i, (A.68)

Γ44 =
1

2

√
∆̄i∆i + Sij

√
∆̄i∆i. (A.69)

The integral in Eq. (A.51) equals the trace of the inverse of the diagonalised bosonic
correlator Γ:

I =

∫ {
Db̄′iDb′iDb̄′jDb′j

}
e−

∫ β
0 dτ B̄ΓB =

∫ β

0

dτ det Γ = e
∫ β
0 dτ Tr ln Γ−1

. (A.70)
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The partition function itself now takes the much simpler form of Eq. (2.24):

Z =

∫
{Dφ} e−

∑
i

∫ β
0 dτ

[
1

2U (φ̇i(τ))
2
+ µ̃
iU
φ̇i(τ)

]
e
∫ β
0 dτ Tr ln Γ−1

. (A.71)

Now that all the elements are in place, we can move out of matrix form by calculating
the trace of the correlator Γ.

A.1.3 Trace calculations

Remembering that constants can be ignored in the path integral framework due to scale
invariance, we rewrite the trace of the correlator in Eq. (A.71) as

Tr ln Γ−1 =−
[

ln

(
−1

2

√
∆̄i∆i − Sij

√
∆̄i∆i

)
+ ln

(
1

2

√
∆̄i∆i − Sij

√
∆̄i∆i

)
+

+ ln

(
−1

2

√
∆̄i∆i + Sij

√
∆̄i∆i

)
+ ln

(
1

2

√
∆̄i∆i + Sij

√
∆̄i∆i

)]
(A.72)

=− ln

[(
−1

2

√
∆̄i∆i − Sij

√
∆̄i∆i

)(
1

2

√
∆̄i∆i − Sij

√
∆̄i∆i

)

×
(
−1

2

√
∆̄i∆i + Sij

√
∆̄i∆i

)(
1

2

√
∆̄i∆i + Sij

√
∆̄i∆i

)]
(A.73)

=− ln

[
1

16

√
∆̄i∆i − Sij

√
∆̄i∆i

2√
∆̄i∆i + Sij

√
∆̄i∆i

2
]

(A.74)

=− ln
1

16
ln
[(

∆̄i∆i − Sij
√

∆̄i∆i

)(
∆̄i∆i + Sij

√
∆̄i∆i

)]
(A.75)

= ln 16 ln
[(

∆̄i∆i − Sij
√

∆̄i∆i

)(
∆̄i∆i + Sij

√
∆̄i∆i

)]
. (A.76)

Further,
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Tr ln Γ−1 = ln

[(
∆̄i∆i

)2 −
(
Sij
√

∆̄i∆i

)2
]

(A.77)

= ln
[(

∆̄i∆i

)2 − S2
ij∆̄i∆i

]
(A.78)

= ln ∆̄i∆i

(
∆̄i∆i − S2

ij

)
(A.79)

= ln ∆̄i∆i + ln
(
∆̄i∆i − S2

ij

)
(A.80)

= ln
(
∆̄i∆i − S2

ij

)
[

1 +
ln ∆̄i∆i

ln
(
∆̄i∆i − S2

ij

)
]

(A.81)

≈ ln
(
∆̄i∆i − S2

ij

)
. (A.82)

At this point, we separate the phase-phase correlator from the hopping terms in Sij:

Sij = G−1
0 + S

′

ij, (A.83)

G−1
0 = δij

(
∂

∂τ
+ µ̄

)
, (A.84)

S
′

ij = −Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT e

−i2φij(τ) ·
(
4
〈
b̄ibj
〉

+ δij
)
. (A.85)

Rewriting the entire logarithm in Eq. (A.82),

ln
(
∆̄i∆i − S2

ij

)
= ln

[
∆̄i∆i −

(
S
′

ij +G−1
0

)2
]

(A.86)

= ln

{
∆̄i∆i −

[(
S
′

ij

)2

+ 2S
′

ijG
−1
0 +

(
G−1

0

)2
]}

(A.87)

= ln
(
G−1

0

)2
[
G2

0∆̄i∆i −G2
0

(
S
′

ij

)2

+ 2S
′

ijG0 + 1

]
(A.88)

= ln
(
G−1

0

)2
ln

[
G2

0∆̄i∆i −G2
0

(
S
′

ij

)2

+ 2S
′

ijG0 + 1

]
(A.89)

= ln

{
G2

0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0 + 1

}
. (A.90)
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Approximating ln (x+ 1) ≈ x (for small x), we get

ln

{
G2

0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0 + 1

}
≈ G2

0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0. (A.91)

All in all, the trace is replaced by the form in Eq. (2.27):

Tr ln Γ−1 = G2
0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0. (A.92)

The next step is to determine all the terms within this approximation, keeping in mind
that both S ′ij, Eq. (A.85), and ∆̄i,∆i, Eqs. (A.53-A.54), contain bosonic averages.

A.1.3.1 Approximating the phase-phase correlator

The phase-phase correlator G0, Eq. (A.84), is approximated by the bosonic amplitude
G0 = b2

0, which can be calculated by minimising the Hamiltonian at b = b0:

H (b0) =
U

2

∑

i

b2
0b

2
0 − Jij

∑

〈i,j〉
b0b0+

−
∑

〈i,j〉

[(
U

2
+ µ

)
δij − 2 (JDIT )ij + 4 (JDIT )ij b

2
0

]
b2

0 (A.93)

=
U

2

∑

i

b2
0b

2
0 − Jij

∑

〈i,j〉
b0b0+

−
∑

〈i,j〉

[
4 (JDIT )ij b

2
0 − 2 (JDIT )ij

]
b2

0 −
∑

i

(
U

2
+ µ

)
b2

0 (A.94)

=N

(
U

2
− 4zJDIT

)
b4

0 +N

[
2zJDIT − (t− 2JDIT ) z −

(
U

2
+ µ

)]
b2

0 (A.95)

=N

{(
U

2
− 4zJDIT

)
b4

0 −
[
z (t− 4JDIT ) +

(
U

2
+ µ

)]
b2

0

}
. (A.96)
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The minimisation condition is

0 =
∂H (b0)

∂b0

=
∂

∂b0

N

{(
U

2
− 4zJDIT

)
b4

0 −
[
z (t− 4JDIT ) +

(
U

2
+ µ

)]
b2

0

}
(A.97)

= N

{(
U

2
− 4zJDIT

)
4b3

0 −
[
z (t− 4JDIT ) +

(
U

2
+ µ

)]
2b0

}
(A.98)

=

{
4

(
U

2
− 4zJDIT

)
b2

0 − 2

[
z (t− 4JDIT ) +

(
U

2
+ µ

)]}
, (A.99)

giving the amplitude in Eq. (2.26),

b2
0 =

z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
. (A.100)

The current form of the trace of the correlation function, Eq. (A.92), is therefore

Tr ln Γ−1 =b4
0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijb
2
0 (A.101)

=

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
∆̄i∆i −

(
S
′

ij

)2
]

+

+ 2S
′

ij

z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
. (A.102)

The last step in calculating the trace is inserting diagonal and anomalous bosonic
averages into S ′ij, Eq. (A.85), and ∆̄i,∆i, Eqs. (A.53-A.54).

A.1.3.2 Bosonic averages

The diagonal average in Eq. (A.85),

〈
b̄ibj
〉

=

∫
{Dφi} e−i[φi(τ)−φj(τ ′)] exp

{∫ β
0
dτ
∑

i

[
1

2U

(
φ̇i (τ)

)2

+ µ̄
iU
φ̇i (τ)

]}

∫
{Dφi} exp

{∫ β
0
dτ
∑

i

[
1

2U

(
φ̇i (τ)

)2

+ µ̄
iU
φ̇i (τ)

]} , (A.103)
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is treated the same as in the standard Bose-Hubbard model [46]. Winding numbers ni
are separated from the phase and the phase integrated, after which the average can be
summed over ni. After Matsubara transform,

〈
b̄ibj
〉

= δije
U
2
|τ−τ ′|

∑
ni

exp
[
−Uβ

2

(
ni + µ̄

U

)2
]

exp
[
−U

(
ni + µ̄

U

)
(τ − τ ′)

]

∑
ni

exp
[
−Uβ

2

(
ni + µ̄

U

)2
] = (A.104)

= δij
1

U
4
− 1

U
(µ̄− iω2

m)
, (A.105)

where ωm = 2πβm are the Matsubara frequencies. This can be further summed over
ωm, giving

〈
b̄ibj
〉

= δij
coth

[
β
2

(
U
2
− µ̄

)]
+ coth

[
β
2

(
U
2

+ µ̄
)]

2
. (A.106)

With that, the diagonal term is

S
′

ij = −Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT · α, (A.107)

where we have designated

α = 2

{
coth

[
β

2

(
U

2
− µ̄

)]
+ coth

[
β

2

(
U

2
+ µ̄

)]}
. (A.108)

Since in the quantum rotor method the amplitude of field operators is constant, the
anomalous averages in Eqs. (A.53-A.54) can be rewritten as

〈bibi〉 = b2
0

〈
ei2φi

〉
= b2

0Ψ2, (A.109)
〈
b̄ib̄i
〉

= b2
0

〈
e−i2φi

〉
= b2

0Ψ2, (A.110)

where Ψ2 is the pair condensation order parameter. The chirality of the phase is
neglected; the anomalous averages are assumed to be the same in both directions.
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Thus, the anomalous term in Eq. (A.102) is

∆̄i∆i =

(
− 8

U
J2
DIT e

−i2φij(τ)

)2

· b2
0Ψ2b

2
0Ψ2 =

(
8J2

DIT b
2
0

U

)2

e−i4φij(τ)Ψ2
2 (A.111)

=

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

8J2
DIT

U

]2

e−i4φij(τ)Ψ2
2. (A.112)

We limit further calculations to 2φij, which means the anomalous ∆̄i∆i term does
not contribute to the effective action at all.

Returning to the trace in Eq. (A.102),

Tr ln Γ−1 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
∆̄i∆i −

(
S
′

ij

)2
]

+

+ 2S
′

ij

z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
(A.113)

=
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT
· gij, (A.114)

where

gij =
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ij. (A.115)

We approximate gij up to exp (2φij):
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gij =− z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT

×
(
−Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT · α

)2

+

+ 2

(
−Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT · α

)
(A.116)

=− 2Je−iφij(τ) − 8µ̄

U
JDIT e

−iφij(τ) − 16

U
J2
DIT · α+

− z (t− 4JDIT ) +
(
U
2

+ µ
)

U − 8zJDIT
· g(2)

ij . (A.117)

Further transformations on the second order term g
(2)
ij :
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g
(2)
ij =

[
−Je−iφij(τ) − 4µ̄

U
JDIT e

−iφij(τ) − 8

U
J2
DIT · α

]2

(A.118)

=
(
Je−iφij(τ)

)2
+

(
4µ̄

U
JDIT e

−iφij(τ)

)2

+

(
8

U
J2
DIT · α

)2

+

+ 2
(
−Je−iφij(τ)

)(
−4µ̄

U
JDIT e

−iφij(τ)

)
+

+ 2
(
−Je−iφij(τ)

)(
− 8

U
J2
DIT · α

)
+

+ 2

(
−4µ̄

U
JDIT e

−iφij(τ)

)(
− 8

U
J2
DIT · α

)
(A.119)

=
(
Je−iφij(τ)

)2
+

(
4µ̄

U
JDIT e

−iφij(τ)

)2

+ C+

+ 2Je−iφij(τ) 4µ̄

U
JDIT e

−iφij(τ)+

+ 2Je−iφij(τ) 8

U
J2
DIT · α + 2

4µ̄

U
JDIT e

−iφij(τ) 8

U
J2
DIT · α (A.120)

=J2e−2iφij(τ) +

(
4µ̄

U
JDIT

)2

e−2iφij(τ) +
8µ̄

U
JJDIT e

−2iφij(τ)+

+
16

U
JJ2

DIT · αe−iφij(τ) +

(
64µ̄

U2
J3
DIT · α

)
e−iφij(τ) (A.121)

=

(
64µ̄

U2
J3
DIT +

16

U
JJ2

DIT

)
· αe−iφij(τ)+

+

[
J2 +

(
4µ̄

U
JDIT

)2

+
8µ̄

U
JJDIT

]
e−2iφij(τ). (A.122)

This concludes the trace calculations. We return a final time to the full trace of the



104 APPENDIX A. INTERACTION-BASED PAIRING: CALCULATIONS

Nambu-like propagator matrix, Eq. (A.114),

Tr ln Γ−1 =−
[
J2 +

(
4µ̄

U
JDIT

)2

+
8µ̄

U
JJDIT

][
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

e−i2φij(τ)+

−
(

64µ̄

U2
J3
DIT +

16

U
JJ2

DIT

)
·
[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

αe−iφij(τ)+

−
(

2J +
8µ̄

U
JDIT

)
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT
e−iφij(τ), (A.123)

which can enter the partition function to form the effective phase-only model.

A.1.4 Effective phase model

Assuming U → ∞, which is a reasonable condition for this model, we can ignore the
troublesome complex phase term in Sφ in Eq. (A.44); the final form of the partition
function, Eq. (2.28), is

Z =

∫
{Dφ} e−

∑
i

∫ β
0 dτ 1

2U (φ̇i(τ))
2
+
∑
〈i,j〉

∫ β
0 dτ (g1e

−iφij(τ)+g2e
−i2φij(τ)), (A.124)

where

g1 =

[(
64µ̄

U2
− 32

U

)
J3
DIT +

16

U
tJ2
DIT

][
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

· α+

−
(

2t+
8µ̄

U
JDIT − 4JDIT

)
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT
, (A.125)

g2 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2
]

+

+

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
2 (t− 2JDIT )

8µ̄

U
JDIT

]
(A.126)
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and inserting the chemical potential in Eq. (A.15) into the parameter α, Eq. (A.108),
we get

α = 2

{
coth

[
β

2

(
U

2
− U

2
+ µ− 2JDIT

)]
+ coth

[
β

2

(
U

2
+
U

2
+ µ− 2JDIT

)]}

(A.127)

= 2

{
coth

[
β

2
(µ− 2JDIT )

]
+ coth

[
β

2
(U + µ− 2JDIT )

]}
, (A.128)

thus obtaining the forms in Eqs. (2.29-2.30).

Having derived the effective phase model, we move onto analysing specifics. To that
end, we apply an S = 1 pseudospin mapping.

A.2 Pseudospin mapping

The phase terms are transformed into spin operators as shown in Section 1.2.2, using
the eigenstates of the number operator,

〈k |N (φ)|m〉 =

∫ 2π

0

dφ

2π
e−ikφ

(
1

i

∂

∂φ

)
eimφ = mδk,m, (A.129)

which extends to trigonometric functions as

〈k |cosφ|m〉 =

∫ 2π

0

dφ

2π
e−i(k−m)φ cosφ =

1

2
(δk−m−1,0 + δk−m+1,0) , (A.130)

〈k |sinφ|m〉 =
i

2
(δk−m−1,0 − δk−m+1,0) . (A.131)

To obtain S = 1, k,m are limited to the lowest-energy states: −1, 0, 1 at kBT/U < 1,
as in Eqs. (2.32-2.34):
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N (φ) = Sz, (A.132)

cosφi =
1√
2
Sxi , (A.133)

sinφi =
1√
2
Syi . (A.134)

Introducing quadrupolar superexchange operators as in Eqs. (2.35-2.36),

Qi = (Sxi )2 − (Syi )2 , (A.135)

Qxy
i = 2Sxi S

y
i , (A.136)

the S = 1 pseudospin Hamiltonian is

H = U
∑

i

(Szi )2 − 1

2
g1

∑

〈i,j〉

(
Sxi S

x
j + Syi S

y
j

)
− 1

4
g2

∑

〈i,j〉

(
QiQj +Qxy

i Q
xy
j

)
. (A.137)

The mean field approximation is next, assuming that due to rotational symmetry in
the XY plane 〈Syi 〉 = 0 and 〈Qxy

i 〉 = 0,

Sxi S
x
j ≈ 〈Sxi 〉Sxj + Sxi

〈
Sxj
〉
− 〈Sxi 〉

〈
Sxj
〉

(A.138)

QiQj ≈ 〈Qi〉Qj +Qi 〈Qj〉 − 〈Qi〉 〈Qj〉 (A.139)

The mean field approximated hamiltonian, Eq. (2.37), is

HMF = U (Szi )2 − 1

2
zg1S

x
i 〈Sxi 〉 −

1

4
zg2 (Qi 〈Qi〉) (A.140)

= J

[
U

J
(Szi )2 − Sxi Ψφ −

J2

J
QiΨ2φ

]
. (A.141)
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The new condensate coefficients are

J =
1

2
zg1, (A.142)

J2 =
1

4
zg2. (A.143)

The 1
2
and the 1

4
stem from the spin transformation itself, and z enters via mean field

approximation.

The single Ψφ and pair Ψ2φ condensate order parameters are defined as in Eqs.
(2.40-2.41),

Ψφ = 〈Sxi 〉 , (A.144)

Ψ2φ = 〈Qi〉 , (A.145)

and minimise the on-site free energy, Eq. (2.42),

f =
1

2

(
JΨ2

φ + J2Ψ2
2φ

)
− 1

β
lnZ, (A.146)

where the partition function,

Z = Tr
{
e−βH

}
=

3∑

n=1

e−βEn (A.147)

= e−β(U+J2Ψ2φ) + 2eβJ2Ψ2φ/2−βU/2 cosh

(
β

2

√
(U − JΨ2φ)2 + 4J2Ψ2

φ

)
, (A.148)

is calculated from the system’s eigenvalues, En:

E1 = (J2Ψ2φ + U) , (A.149)

E2 =
1

2

[
U − J2Ψ2φ −

1

2

√
16J2Ψ2

φ + (2J2Ψ2φ − 2U)2

]
, (A.150)

E3 =
1

2

[
U − J2Ψ2φ +

1

2

√
16J2Ψ2

φ + (2J2Ψ2φ − 2U)2

]
. (A.151)
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The critical line equations are as in Eq. (2.43),

∂f

∂Ψφ

= 0,
∂f

∂Ψ2φ

= 0, (A.152)

and expanded become the self-consistent equations in Eqs. (2.44-2.45),

1 =
4J tanh

(
β
2

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ

)

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ [X + 2]
, (A.153)

Ψ2φ =
U

J2 − 4J
+

4J

4J − J2

· 1−X
2 +X

, (A.154)

where

X =
e−

β
2 (U+3J2Ψ2φ)

cosh
(
β
2

√
(U − J2Ψ2φ)2 + 4J2Ψ2

φ

) . (A.155)

These equations are ready for numerical solving for any thermodynamic properties of
the two condensates.



Appendix B

Dissipative interaction-based pairing:
calculations

We start with the effective phase model with interaction-based pairing. As in Eqs.
(3.1-3.4) in Chapter 3, the effective action of the model,

S [φ] = SU [φ] + S1 [φ] + S2 [φ] , (B.1)

can be divided into three terms: interaction,

SU [φ] =
1

2U

∑

〈i,j〉

∫ β

0

dτ

(
∂φi
∂τ

)2

+
µ̄

iU
φ̇i (τ) , (B.2)

single condensation,

S1 [φ] = g1

∑

〈i,j〉

∫ β

0

dτ cos [φi (τ)− φj (τ)] , (B.3)

and pair condensation,

S2 [φ] = g2

∑

〈i,j〉

∫ β

0

dτ cos 2 [φi (τ)− φj (τ)] . (B.4)
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B.1 Coefficients

The standard approach bases on the effective phase model in Eq. (2.28), where the
phase-phase correlator G0, Eq. (2.16), is replaced with the constant amplitude b0 in
Eq. (2.26), as shown in more detail in Section A.1.3.1. In that case, the single and
pair coefficients g1, Eq. (3.6), and g2, Eq. (3.7), are as in Eqs. (A.125) and (A.126),
respectively:

g1 =

[(
64µ̄

U2
− 32

U

)
J3
DIT +

16

U
tJ2
DIT

][
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2

· α+

−
(

2t+
8µ̄

U
JDIT − 4JDIT

)
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT
, (B.5)

g2 =

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2
]

+

+

[
z (t− 4JDIT ) +

(
U
2

+ µ
)

U − 8zJDIT

]2 [
2 (t− 2JDIT )

8µ̄

U
JDIT

]
, (B.6)

where

α = 2

{
coth

[
β

2

(
U

2
− U

2
+ µ− 2JDIT

)]
+ coth

[
β

2

(
U

2
+
U

2
+ µ− 2JDIT

)]}

(B.7)

= 2

{
coth

[
β

2
(µ− 2JDIT )

]
+ coth

[
β

2
(U + µ− 2JDIT )

]}
. (B.8)

A second, more robust approach is also considered, based on conserving the original
correlator G0, Eq. (2.16). We are interested in what sort of imaginary time dependence
is generated, keeping in mind how dissipative terms are represented in the effective
action [6].
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B.1.1 Derivation of imaginary time coefficients

We return to the trace of the density-induced tunnelling BHM correlator, Eq. (A.92)
in Appendix A:

Tr ln Γ−1 = G2
0

[
∆̄i∆i −

(
S
′

ij

)2
]

+ 2S
′

ijG0, (B.9)

with phase-phase correlator as in Eq. (2.16),

G−1
0 =

(
∂

∂τ
+ µ̄

)
, (B.10)

the tunnelling S ′ij, Eq. (A.85), and the non-diagonal terms ∆̄i,∆i, Eqs. (A.53-A.54),

S
′

ij = −Je−iφij(τ) − 4µ̄

U
Te−iφij(τ) − 8

U
T 2e−i2φij(τ) ·

(
4
〈
b̄ibj
〉

+ δij
)
, (B.11)

∆i = − 8

U
T 2e−i2φij(τ) 〈bibi〉 , (B.12)

∆̄i = − 8

U
T 2e−i2φij(τ)

〈
b̄ib̄i
〉
. (B.13)

In this model, we preserve the original form of G0, Eq. (B.10), which after Matsub-
ara transform becomes Eq. (3.8):

G0 =
−iωm + µ̄

ω2
m + µ̄2

. (B.14)

The trace in Eq. (B.9) also contains G2
0, which is

G2
0 = (−iωm + µ̄)−2 =

1

(−iωm + µ̄)2 . (B.15)

Thus, the single and pair coefficients of this effective phase model, Eqs. (3.11,3.12)
depend on imaginary time:
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g′1 (ωm) =− −iωm + µ̄

ω2
m + µ̄2

[
2 (t− 2JDIT ) +

8µ̄

U
JDIT

]
+ (B.16)

+
1

(−iωm + µ̄)2

(
64µ̄

U2
J3
DIT +

16

U
JJ2

DIT

)
(B.17)

×
{

2

[
coth

(
−βµ

2

)
+ coth

(
β (µ+ U)

2

)]
+ 1

}
, (B.18)

g′2 (ωm) =
1

(−iωm + µ̄)2

×
[

(t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT

]
. (B.19)

Imaginary time–dependent terms are present in both condensation parts of the effective
phase model, S1 in Eq. (B.3) and S2 in Eq. (B.4). The single coefficient g′1 generates
two contributions, one of which has an additional dissipation-like impact, Eq. (B.16).
However, this term depends on higher orders of JDIT/U than g′2 in Eq. (B.19), so at
JDIT/U � 1 the pair dissipation is much stronger. The second g′1 contribution, Eq.
(B.17), is negligible in low temperatures after Matsubara summation. As our focus is
on the pair condensate, we forgo the marginally relevant contributions introduced by
the single condensation coefficient g′1 and replace it with the approximated g1 of Eq.
(B.5), focusing on the properties of the pairing mechanism in low temperatures.

The effective action remains the same, Eq. (B.1). We rewrite the pair term, S ′2, to
separate the imaginary time dependency from the pair coefficient g′2, as in Eq. (3.13):

S ′2 [φ] = g′2
∑

〈i,j〉

∫ β

0

dτdτ
′ 1

(τ − τ ′)2 cos 2
[
φi (τ)− φj

(
τ
′
)]
, (B.20)

where

g′2 = (t− 2JDIT )2 +

(
4µ̄

U
JDIT

)2

+ 2 (t− 2JDIT )
8µ̄

U
JDIT (B.21)

is the derived pair condensate coefficient.
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B.2 Dissipative models

Traditionally, dissipative terms are added to many body Hamiltonians as arbitrary
external factors. In this model, however, the microscopic Hamiltonian already contains
the relevant term. We implement a series expansion of the double cosine to second
order as

cos (2x) = 1− 2x2 +O
(
x3
)
, (B.22)

after which, following Caldeira and Leggett, 1981 [6], the pair condensation part of the
effective action S ′2 in Eq. (B.20) can be rewritten as explicitly dissipative, as in Eq.
(3.15):

S ′2 [φ] = 2g′2
∑

〈i,j〉

∫ β

0

dτdτ
′ 1

(τ − τ ′)2

[
φi (τ)− φj

(
τ
′
)]2

. (B.23)

In the b0-approximated version of the model, with g2 in Eq. (B.6), the imaginary
time factor does not emerge naturally. To study the dissipative effect of the pair term in
Eq. (B.4), we treat it as a bath of harmonic potential, artificially coupled to the single
particle condensate defined by Eqs. (B.2-B.3). The pairing term S2 of the assumed
model, Eq. (B.4), is series expanded to second order and assumed to be dissipative as
well, as in Eq. (3.16):

S2 [φ] = 2g2

∑

〈i,j〉

∫ β

0

dτdτ
′

[
φi (τ)− φj

(
τ
′)

τ − τ ′
]2

. (B.24)

Ultimately, since S2 has the same form in Eqs. (B.23) and (B.24), the two ap-
proaches differ only by their pair condensate coefficients:

G0

↗
↘

b0 coupled condensates
→ g1 single particle
→ g2 pair

G0 full treatment
→ g′1 → g1 single particle

→ g′2 pair

(B.25)

While the idea of coupling a single particle condensate with an external dissipative term
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is widely accepted and utilised, the derived version of S2 exhibits intrinsic dissipative
properties.

B.2.1 Preparing dissipative effective action

We move on with a single model, as defined by Eq. (B.1), and analyse it in terms of
both the assumed g2, Eq. (B.6), and the derived g′2, Eq. (B.21). In order to map the
model onto pseudospin and introduce the quantum spherical model,

We rewrite the quadratic term in S2, Eq. (B.24) as:

[φi (τ)− φj (τ)]2 = φ2
i (τ)− 2φi (τ)φj (τ) + φ2

j (τ) (B.26)

and rearrange the index:

∑

i,j

φ2
i (τ) = N

∑

i,j

φi (τ)φj (τ) δji = N
∑

i,j

∫ β

0

dτ φi (τ)φj (τ) δji, (B.27)

−2φi (τ)φj (τ) = −2

∫ β

0

dτ φi (τ)φj (τ) , (B.28)

∑

i,j

φ2
j (τ) = N

∑

i,j

φi (τ)φj (τ) δji = N
∑

i,j

∫ β

0

dτ φi (τ)φj (τ) δji. (B.29)

At this point,

∑

i,j

[φi (τ)− φj (τ ′)]
2

= 2
∑

i,j

∫ β

0

dτ (Nδji − 1)φi (τ)φj (τ ′) Iij, (B.30)

where additionally
N
∑

i,j

Iijδijφi (τ)φj (τ ′) = 0, (B.31)

meaning the dissipative action itself, Eq. (B.24), takes the form

S2 =
∑

i,j

∫ β

0

dτ
4g2

τ 2
φi (τ)φj (τ) Iij. (B.32)
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To obtain a Gaussian form in terms of phase exponential terms, we carry out the
following transformation:

eiφ(τ) = ψ, (B.33)

e−iφ(τ) = ψ∗, (B.34)

for which the derivatives will be

∂

∂τ
ψ =

∂

∂τ
eiφ(τ) = i

∂φ

∂τ
eiφ(τ) = i

∂φ

∂τ
ψ, (B.35)

∂

∂τ
ψ∗ =

∂

∂τ
e−iφ(τ) = −i∂φ

∂τ
e−iφ(τ) = −i∂φ

∂τ
ψ∗, (B.36)

∂ψ

∂τ

∂ψ∗

∂τ
= i

∂φ

∂τ
ψ (−i) ∂φ

∂τ
ψ∗ =

(
∂φ

∂τ

)2

|ψ|2 =

(
∂φ

∂τ

)2

. (B.37)

After Fourier and Matsubara transforms, the effective action terms in Eq. (B.1) are
as follows: interaction

SU [ψ] =
1

2UβN

∑

ij

∑

m

∑

k

ω2
mψk,mψ−k,m; (B.38)

single particle condensation

S1 [φ] = g1

∑

i,j

∫ β

0

dτ ψi (τ)ψ∗j (τ) Iij, (B.39)

where Iij singles out nearest neighbours:

Iij =

{
1 |i− j| ≤ a,

0 |i− j| > a;
(B.40)

and dissipation, which from this point onwards we rename from S2 to SD,

SD =
4g2

Nβ

∑

k

∑

a

∑

m

cos kda |ωm|φk,−mφ−k,m. (B.41)
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This form of the effective action can be mapped onto the quantum spherical model,
shown in Section 1.2.4.

B.3 Quantum spherical mapping

To rewrite the effective action, both the pseudospin mapping and the spherical con-
straint are introduced as Dirac delta functions,

1 ≡
∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)

×
∏

i

δ [<ψi (τ)− Sxi (φ (τ))] δ [=ψi (τ)− Syi (φ (τ))] , (B.42)

and inserted into the partition function:

Z =

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−S1[ψ]

×
∫
{Dφ} e−SU+D[φ]

∏

i

δ [<ψi (τ)− Sxi (φ (τ))] δ [=ψi (τ)− Syi (φ (τ))] , (B.43)

where the spin equivalents,

Si (φ) = [Sxi (φ) , Syi (φ)] = [cos (φi) , sin (φi)] , (B.44)

according to the spherical model sum up to 1,

1

N

∑

i

|Si (φ)|2 = 1. (B.45)

The Dirac delta is expanded into an integral:

δ [ψi (τ)] =

∫ +i∞

−i∞

[∏

i

Dµi (τ)

2πi

]
exp

[∫ β

0

dτµi (τ)ψi (τ)

]
, (B.46)
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which transforms the partition function as follows:

Z =

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−S1[ψ]

×
∫
{Dφ} e−SU+D[φ]

∫ [∏

i

Dµi (τ)

2πi

]
e
∑
i

∫ β
0 dτµi(τ)[Si−Ψi] (B.47)

=

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−S1[ψ]

×
∫
{Dφ}

∫ [∏

i

Dµi (τ)

2πi

]
e−(SU+D[φ]+

∑
i

∫ β
0 dτµi(τ)[Si−Ψi]) (B.48)

=

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−(S1[ψ]+ΦU+D[ψ]) (B.49)

=

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−Seff [ψ], (B.50)

where the interaction integral is

ΦU+D [ψ] = ln

∫
{Dφ}

∫ [∏

i

Dµi (τ)

2πi

]
e−(SU+D[φ]+

∑
i

∫ β
0 dτµi(τ)[Ψi−Si]) (B.51)

= ln

∫
{Dφ}

∫ [∏

i

Dµi (τ)

2πi

]
e−

∑
i

∫ β
0 dτµi(τ)Ψie

∑
i

∫ β
0 dτµi(τ)Si−SU+D[φ] (B.52)

= ln

∫ [∏

i

Dµi (τ)

2πi

]
e−

∑
i

∫ β
0 dτµi(τ)Ψi+ln

∫
{Dφ} exp[

∑
i

∫ β
0 dτµi(τ)Si−SU+D[φ]]

(B.53)

= ln

∫ [∏

i

Dµi (τ)

2πi

]
e−(

∑
i

∫ β
0 dτµi(τ)Ψi−G[µ]). (B.54)
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We expand the correlator G,

G [µ] = ln

∫
{Dφ} exp

[∑

i

∫ β

0

dτµi (τ)Si − SU+D [φ]

]
, (B.55)

using the loop expansion:

G [µ] =
∞∑

m=1

1

m!

∫
dx1...dxmG0m (x1, ..., xm) , (B.56)

where variables have been shifted to

xm ≡ (im, τm, am) ,

∫
dx... ≡

∫ β

0

dτ
∑

im

∑

am

.... (B.57)

We obtain
G0m (x1, ..., xm) =

〈
Sa1
i1

[φ (τ)] ...Samim [φ (τ)]
〉cum

0
, (B.58)

where the average is defined on the two interaction action terms,

〈...〉0 =

∫
[
∏

iDφi] ...e−SU+T[φ]

∫
[
∏

iDφi] e−SU+T[φ]
. (B.59)

The expansion is limited to second order,

G [µ] =

∫
dx1G01 (x1)µ (x1) +

1

2

∫
dx1dx2G02 (x1, x2)µ (x1)µ (x2) +O

(
µ3
)
, (B.60)

where the first order term integrates out to
∫
dx1G01 (x1)µ (x1) = 0. (B.61)

Therefore, the correlator G can be replaced by

G [µ] =
1

2

∫ ∑

i,j

dτdτ ′G02 (iτ, jτ ′)µi (τ)µj (τ ′) , (B.62)
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where

G02 (iτ, jτ ′) = 〈Si [φ (τ)]Si [φ (τ ′)]〉cum
0 (B.63)

=
1

Z0

∑

{ni}

∏

i

∫ 2π

0

dθ (0)

∫ θ(0)+2πni

θ(0)

Dφ ei[θi(τ)−θj(τ ′)]e−SU+D[φ], (B.64)

and the partial partition function is

Z0 =
∑

{ni}

∏

i

∫ 2π

0

dθ (0)

∫ θ(0)+2πni

θ(0)

Dφ e−SU+D[φ]. (B.65)

Returning with the approximated correlator G02, Eq. (B.64), to the interaction
integral, Eq. (B.54)

ΦU+D [ψ] = ln

∫ [∏

i

Dµi (τ)

2πi

]
e−(

∑
i

∫ β
0 dτµi(τ)Ψi−G[µ]) (B.66)

= ln

∫ [∏

i

Dµi (τ)

2πi

]
e−[

∑
i

∫ β
0 dτµi(τ)Ψi− 1

2

∫ ∑
i,j dτdτ

′G02(iτ,jτ ′)µi(τ)µj(τ
′)] (B.67)

= ln

√
2πN

detG02 (iτ, jτ ′)
e
∫ ∑

i,j dτdτ
′ψiG02(iτ,jτ ′)ψ∗j (B.68)

=

∫ ∑

i,j

dτdτ ′ψiG−1
02 (iτ, jτ ′)ψ∗j . (B.69)
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The full partition function, Eq. (B.50), is now

Z =

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−Seff [ψ] (B.70)

=

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)
e−(S1[ψ]+ΦU+D[ψ]) (B.71)

=

∫
{DψDψ∗} δ

(∑

i

|ψ (τ)|2 −N
)

× exp


−


∑

〈i,j〉

∫ β

0

dτ g1Iijψi (τ)ψ∗j (τ) +

∫ ∑

i,j

dτdτ ′ ψiG−1
02 (iτ, jτ ′)ψ∗j




 .

(B.72)

We expand the spherical condition as an integral, introducing the spherical con-
straint λ:

δ

(∑

i

|ψ (τ)|2 −N
)

=

∫ +i∞

−i∞

[∏

i

Dλ (τ)

2πi

]
e
∫ β
0 dτ λ(τ)(

∑
i|ψ(τ)|2−N) (B.73)

into the partition function

Z =

∫
{DψDψ∗}

∫ +i∞

−i∞

[∏

i

Dλ (τ)

2πi

]
e−SQSA[ψ,λ], (B.74)
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where

SQSA [ψ, λ] =
∑

〈i,j〉

∫ β

0

dτ g1Iijψi (τ)ψ∗j (τ) +

∫ ∑

i,j

dτdτ ′ψiG−1
02 (iτ, jτ ′)ψ∗j+

−
∫ β

0

dτ λ (τ)

(∑

i

|ψ (τ)|2 −N
)

(B.75)

=
∑

〈i,j〉

∫ β

0

dτdτ ′
[
g1Iijψi (τ)ψ∗j (τ) δ (τ − τ ′) + ψiG−1

02 (iτ, jτ ′)ψ∗j
]

+

+
∑

〈i,j〉

∫ β

0

dτdτ ′
[
−
(
ψiψ

∗
j δij −N

)
λ (τ) δ (τ − τ ′)

]
(B.76)

=
∑

〈i,j〉

∫ β

0

dτdτ ′
[
g1Iijψi (τ)ψ∗j (τ) δ (τ − τ ′) + ψiG−1

02 (iτ, jτ ′)ψ∗j
]

+

+
∑

〈i,j〉

∫ β

0

dτdτ ′
[
−ψiψ∗jλ (τ) δijδ (τ − τ ′) +Nλ (τ) δ (τ − τ ′)

]
. (B.77)

At this point, the partition function satisfies the saddlepoint condition, taking the form
in Eq. (3.18),

Z =

∫ +i∞

−i∞

[∏

i

Dλ (τ)

2πi

]
e−Nφ[λ], (B.78)

where

φ [λ] =−
∫ β

0

dτdτ ′λ (τ) δ (τ − τ ′)− 1

N
ln

∫
{DψDψ∗}

× e
∑
i,j

∫ β
0 dτdτ ′[λ(τ)δijδ(τ−τ ′)−g1Iijδ(τ−τ ′)+G−1

02 (iτ,jτ ′)]ψi(τ)ψ∗j (τ). (B.79)
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After Matsubara transform, the single hopping term takes the form

∫ β

0

dτdτ ′g1Iijδ (τ − τ ′)ψi (τ)ψ∗j (τ ′) =

∫ β

0

dτdτ ′g1δ (τ − τ ′)ψimψ∗jne−iωmτe−iωnτ
′

(B.80)

=

∫ β

0

dτg1ψimψ
∗
jne
−i(ωm−ωn)τ (B.81)

= g1Iijψimψ
∗
jm, (B.82)

sp the saddlepoint function can be rewritten as

φ [λ] =− βλ− 1

N
ln

∫
{DψDψ∗}

× exp

{
−
∑

i,j

[
λ (τ) δij − g1Iij + G−1

02 (iωm, jωm)
]
ψimψ

∗
jm

}
. (B.83)

After Fourier transform, we get the form in Eq. (3.19),

φ [λ] = −βλ− 1

2N

∑

k

ln

{
1

βπ

[
λ− g1ξk + G−1

02 (k, ωm)
]}

, (B.84)

where ξk = 2
∑

d cos kd.

The next step in the saddlepoint approximation is minimising the free energy,

F = −λ− 1

2βN

∑

k

ln

{
1

βπ

[
λ− g1ξk + G−1

02 (k, ωm)
]}

, (B.85)

in terms of the spherical constraint

∂F
∂λ

= 0, (B.86)
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to obtain the critical line equation in Eq. (3.23):

1 =
1

2βN

∑

k

∑

m

1

λ− g1ξk + G−1
02 (k, ωm)

. (B.87)

Inserting density of states,

ρ (E) =
1

N

∑

k

δ (E − ξk) , (B.88)

we obtain the form in Eq. (3.23):

1 =
1

2βN

∑

k

∑

m

1

λ− g1ξk + G−1
02 (k, ωm)

(B.89)

=
1

2β

[∫
dE

1

N

∑

k

δ (E − ξk)
]∑

m

1

λ− g1E + G−1
02 (k, ωm)

(B.90)

=
1

2β

∫
dE

∑

m

ρ (E)

λ− g1E + G−1
02 (E,ωm)

. (B.91)

The final remaining step is evaluating the correlator, G02.

B.4 Evaluating the correlator

Returning to the second order correlator, Eq. (B.64),

G02 (iτ, jτ ′) =
1

Z0

∫
{Dφ} ei[φi(τ)−φj(τ ′)]e−SU+D[φ], (B.92)

where the interaction partition function is

Z0 =

∫
{Dφ} e−SU+D[φ] (B.93)
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and the interaction effective action is

SU+D [φ] =
1

2U

∑

ij

∫ β

0

dτ

(
∂φi
∂τ

)(
∂φj
∂τ

)
+ 4g2

∑

i,j

∫ β

0

dτdτ ′
1

τ 2
φi (τ)φj (τ ′) . (B.94)

Matsubara tranformation:

SU+D [φ] = − 1

2Uβ

∑

i,j

∑

m

ω2
mφi,mφ

∗
j,m − 4

g2

β

∑

i,j

∑

a

∑

m

|ωm|φi,mφ∗j,m (B.95)

=
∑

i,j

∑

m

(
− 1

2Uβ
ω2
m + 4

g2

β
|ωm|

)
φi,mφ

∗
j,m, (B.96)

i [φi (τ)− φj (τ ′)] =
i

β

∑

m

e−iωmτφi,m −
i

β

∑

n

e−iωnτ
′
φj,m (B.97)

=
i

β
(φi,0 − φj,0) +

i

β

(∑

m=1

e−iωmτφi,m −
∑

n=1

e−iωnτ
′
φj,m

)
+

+
i

β

(∑

m=1

eiωmτφ∗i,m −
∑

n=1

eiωnτ
′
φ∗j,m

)
(B.98)

=
i

β
(φi,0 − φj,0) +

i

β

∑

m=1

φi,m

(
e−iωmτ − e−iωnτ ′

)
+

+
i

β

∑

m=1

φ∗i,m

(
eiωmτ − eiωnτ ′

)
. (B.99)

Inserting the necessary terms into the Eq. (B.92), we get

G02 (iτ, jτ ′) =
1

Z0

∫
{Dφ} δi,j exp

[∑

i,j

∑

m

(
− ω2

m

2Uβ
+ 4

g2

β
|ωm|

)
φi,mφ

∗
j,m

]

× exp

[
i

β

∑

m=1

φi,m

(
e−iωmτ − e−iωnτ ′

)
+
i

β

∑

m=1

φ∗i,m

(
eiωmτ − eiωnτ ′

)]
,

(B.100)
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where

Z0 =

∫
{Dφ} exp

[∑

i,j

∑

m

(
− 1

2Uβ
ω2
m + 4

g2

β
|ωm|

)
φi,mφ

∗
j,m

]
. (B.101)

After Gaussian integration,

G02 (iτ, jτ ′) = δi,j exp

[(
i

β

)2∑

i,j

∑

m

(
e−iωmτ − e−iωnτ ′

) (
eiωmτ − eiωnτ ′

)

−ω2
m

2Uβ
+ 4g2

β
|ωm|

]
. (B.102)

Fourier transform brings us to the form in Eq. (3.20),

G02 (τ, τ ′) = exp

{
1

βN

∑

k

∑

m

1− cos [ωm (τ − τ ′)]
1

2U
ω2
m + 4g2 |ωm|

}
. (B.103)

This term is still too complex for comfortable usage. From this full form of G02,
we can determine the parameter range in which it is safe to approximate with a more
manageable expression.

B.4.1 Full correlator

The interior part of the correlator G02, Eq. (B.103), designating (τ − τ ′) = x, is

2

β

∞∑

m=0

1− cosωmx
1

2U
ω2
m + 4g2ωm

=
1

8πg2

[
2H 4g2Uβ

π

+ e
2iπx
β Φ

(
e

2iπx
β , 1,

4g2Uβ

π
+ 1

)
+

+ e−
2iπx
β Φ

(
e−

2iπx
β , 1,

4g2Uβ

π
+ 1

)
+

+ ln
(

1− e 2iπx
β

)
+ ln

(
1− e− 2iπx

β

)]
, (B.104)
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where Hn is the nth harmonic number and Φ (z, s, a) is the Hurwitz-Lerch transcendent.
Rewriting further,

2

β

∞∑

m=0

1− cosωmx
1

2U
ω2
m + 4g2ωm

=
2H 4g2Uβ

π

− π
4βUg2+π

+ ln
[(

1− e 2iπx
β

)(
1− e− 2iπx

β

)]

8πg2

(B.105)

=
(4βg2U + π)

{
2H 4g2Uβ

π

+ ln
[
4 sin2

(
πx
β

)]}
− π

8πg2 (4βg2U + π)
(B.106)

=
2H 4g2Uβ

π

+ ln
[
4 sin2

(
πx
β

)]
− π

(4βg2U+π)

8πg2

. (B.107)

The logarithm can be approximated to second order as

ln

[
4 sin2

(
πx

β

)]
= ln

[(
2πx

β

)2
]
− π2x2

3β2
+O

[
x3
]

(B.108)

= 2 ln

∣∣∣∣
2πx

β

∣∣∣∣−
π2x2

3β2
+O

[
x3
]

(B.109)

= 2 ln

(
2π

β
|x|
)
− π2x2

3β2
+O

[
x3
]

(B.110)

= 2 ln |x|+ 2 ln
2π

β
− π2x2

3β2
+O

[
x3
]
, (B.111)

in which case

2

β

∞∑

m=0

1− cosωmx
1

2U
ω2
m + 4g2ωm

≈ 2

8πg2

ln |x| − π2

24πβ2g2

x2+

+
2H 4g2Uβ

π

+ 2 ln 2π
β
− π

(4βg2U+π)

8πg2

. (B.112)

Returning from x to the imaginary time variable, the full form of the correlator in
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Eq. (B.103) is

G02 (τ, τ ′) = exp

{
2

βN

∞∑

m=0

1− cos [ωm (τ − τ ′)]
1

2U
ω2
m + 4g2 |ωm|

}
(B.113)

= exp

[
1

N

2

8πg2

ln |τ − τ ′| − π

24β2g2

(τ − τ ′)2

]
+

+ exp
2H 4g2Uβ

π

+ 2 ln 2π
β
− π

(4βg2U+π)

8πg2

. (B.114)

After Matsubara transform, we obtain Eq. (3.28):

G02 (ωm) =
exp (c) b−

a
2
− 1

2√
2π

Γ

(
a+ 1

2

)
1F1

(
a+ 1

2
;
1

2
;−ω

2
m

4b

)
, (B.115)

where Γ is the Euler gamma function, 1F1 is the Kummer confluent hypergeometric
function, and the parameters are

a =
2

8πg2

, (B.116)

b =
π2

24πβ2g2

, (B.117)

c =
2H 4g2Uβ

π

+ 2 ln 2π
β
− π

(4βg2U+π)

8πg2

. (B.118)

This form is used to analytically determine the range of parameters for further calcula-
tions in Section 3.4.1. Within that range, we assume that at low enough temperatures,
the imaginary time cosine oscillates quickly around 0 and averages out to 0. In that
case, the inverse of the correlator can be approximated by its denominator:

G−1
02 (kτ, kτ ′) ≈ 1

2U
ω2
m + 4g2 |ωm| . (B.119)

The last unknown left in the critical equation, Eq. (B.91), is the spherical constraint
λ, which can be approximated at saddlepoint by λ = λ0, where
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λ0 = g1ξmax − G−1
02 (ωm=0) = g1ξmax − 0 = g1ξmax. (B.120)

Having determined the correlator G02 and the spherical constraint λ, we can obtain
an explicit form of the critical line equation.

B.5 Critical line equation

Inserting the approximated correlator in Eq. (B.119) and the saddlepoint spherical
constraint value λ0 in Eq. (B.120) into the critical line equation, Eq. (B.91), we obtain

1 =
1

2β

∫
dξ
∑

m

ρ (ξ)

g1 (ξmax − ξ) + 1
2U
ω2
m + 4g2 |ωm|

. (B.121)

The final step is the Matsubara sum, which can be separated into three terms,
depending on the sign of m,

∑

m

1

g1 (ξmax − ξ) + 1
2U
ω2
m + 4g2 |ωm|

=





∑−1
m=−∞

1
g1(ξmax−ξ)+ 1

2U
ω2
m−4g2ωm

, m < 0,

1
g1(ξmax−ξ) , m = 0,
∑+∞

m=1
1

g1(ξmax−ξ)+ 1
2U
ω2
m+4g2ωm

, m > 0.

(B.122)

These terms sum up to digamma functions, ψ(0), as in Eq. (3.25):

1

2β

∑

m

1

g1 (ξmax − ξ) + 1
2U
ω2
m + 4g2 |ωm|

=
1

2πγ
ψ(0)

[
βU

2π
(4g2 + γ)

]
+

− 1

2πγ
ψ(0)

[
βU

2π
(4g2 − γ)

]
, (B.123)
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where

γ =

√
(4g2)2 − 4g1 (ξmax − ξ)

1

2U
(B.124)

=

√
(4g2)2 − 2

g1

U
(ξmax − ξ). (B.125)

At low temperatures, β → ∞, digamma functions can be approximated as loga-
rithms,

ψ(0) (βX) ≈ ln βX. (B.126)

The final version of the critical line equation used in numerics is thus Eq. (3.27):

1 =
1

2π

∫
dξ ρ (ξ)

√
U
2

(4g2)2 U
2
− g1 (ξmax − ξ)

ln

[
4g2 + γ

4g2 − γ

]
(B.127)

=
1

2π

∫
dξ ρ (ξ)

√
1

(4g2)2 − 2g1

U
(ξmax − ξ)

ln

[
4g2 + γ

4g2 − γ

]
. (B.128)

Both models can be analysed numerically using this equation by entering the proper
forms of the single and pair coefficients, g1 and g2.



130APPENDIX B. DISSIPATIVE INTERACTION-BASED PAIRING: CALCULATIONS



Appendix C

Correlation-based pairing: calculations

We follow the standard quantum rotor derivation [46, 33] up until the trace of the
correlator.

We start with the standard Bose-Hubbard Hamiltonian, Eq. (4.1):

Ĥ =
U

2

∑

i

n̂i (n̂i − 1)−
∑

〈i,j〉
tij â

†
i âj − µ

∑

i

n̂i (C.1)

=
U

2

∑

i

n̂2
i −

∑

〈i,j〉
tij â

†
i âj − µ̄

∑

i

n̂i, (C.2)

where

µ̄ = µ+
U

2
(C.3)

is the shifted chemical potential.

C.1 Quantum rotor derivation

The path integral partition function is

131
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Z =

∫
{DāDa} e−S[ā,a], (C.4)

with effective action

S = SB [ā, a] +

∫ β

0

dτ H (τ) , (C.5)

SB =
∑

i

∫ β

0

dτ āi (τ)
∂

∂τ
ai (τ) . (C.6)

The U interaction term is decoupled by the Hubbard-Stratonovich transformation,
Eq. (1.14). The effective action can then be separated into bosonic Sb and effective
electrochemical potential SV parts:

Z =

∫
{DāDa} e−Sb[ā,a]

∫
dV

2π
e−SV [n,V ], (C.7)

Sb =

∫ β

0

dτ


∑

i

āi (τ)
∂

∂τ
ai (τ)−

∑

〈i,j〉
tij āi (τ) aj (τ)


 , (C.8)

SV =
∑

i

∫ β

0

dτ

(
1

2U
V 2
i (τ)− (iVi (τ)− µ̄)ni (τ)

)
. (C.9)

The effective potential is shifted Vi (τ) = V T
i (τ) + µ̄

i
,

SV =
∑

i

∫ β

0

dτ

{
1

2U

(
V T
i (τ) +

µ̄

i

)2

−
[
i
(
V T
i (τ) +

µ̄

i

)
− µ̄

]
ni (τ)

}
(C.10)

=
∑

i

∫ β

0

dτ

{
1

2U

[(
V T
i (τ)

)2 − µ̄2 + 2
V T
i (τ) µ̄

i

]
− iV T

i (τ)ni (τ)

}
(C.11)

=
∑

i

∫ β

0

dτ

[
1

2U

(
V T
i (τ)

)2 − 1

2U
µ̄2 +

V T
i (τ) µ̄

iU
− iV T

i (τ)ni (τ)

]
, (C.12)
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and split into static and periodic parts,

V T
i (τ) = V S

i (τ) + V P
i (τ) , (C.13)

V S
i (τ) =

1

β
V T
i (ωm=0) , (C.14)

V P
i (τ) =

1

β

+∞∑

m=1

(
V T
i (ωm) eiωmτ + c.c.

)
, (C.15)

where the periodic part is coupled to a U(1) periodic phase field φ (τ):

V P
i = φ̇i (τ) . (C.16)

A phase-dependent effective action term can now be separated out in the partition
function:

Z =

∫
{DāDa} e−Sb[ā,a]

∫ [
dV S

2π

]
e−S2[n,V S]

∫
{Dφ} e−Sφ[n,φ̇], (C.17)

where

Sb =

∫ β

0

dτ


∑

i

āi (τ)
∂

∂τ
ai (τ)−

∑

〈i,j〉
tij āi (τ) aj (τ)


 , (C.18)

SV = β
∑

i

[
1

2U

(
V S
i (τ)

)2 − µ̄2

2U
+

µ̄

iU
V S
i (τ)− iV S

i (τ)

β

∫ β

0

dτ ni (τ)

]
, (C.19)

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̄

iU
φ̇i (τ)− iφ̇i (τ)ni (τ)

]
. (C.20)

The next step is a gauge transformation, which introduces explicit phase terms
based on the bosonic action, Eq. (C.18).

C.1.1 Gauge transformation

Phase and amplitude are separated in the bosonic fields as in Eq. (1.15):
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ai (τ) = eiφi(τ)bi (τ) , (C.21)

āi (τ) = e−iφi(τ)b̄i (τ) , (C.22)

for the bosonic action:

Sb =

∫ β

0

dτ


∑

i

āi (τ)
∂

∂τ
ai (τ)−

∑

〈i,j〉
tij āi (τ) aj (τ)


 (C.23)

=

∫ β

0

dτ
∑

i

e−iφi(τ)b̄i (τ)
∂

∂τ

(
eiφi(τ)bi (τ)

)
+

−
∫ β

0

dτ
∑

〈i,j〉
tije
−iφi(τ)b̄i (τ) eiφj(τ)bj (τ) (C.24)

=

∫ β

0

dτ

(∑

i

iφ̇i (τ) b̄i (τ) bi (τ) +
∑

i

b̄i (τ)
∂

∂τ
bi (τ)

)
+

−
∫ β

0

dτ
∑

〈i,j〉
tije
−iφij(τ)b̄i (τ) bj (τ) , (C.25)

and for the phase action, where φij = φi − φj:

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̄

iU
φ̇i (τ)− iφ̇i (τ)ni (τ)

]
(C.26)

=
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̄

iU
φ̇i (τ)− iφ̇i (τ) e−iφi(τ)b̄i (τ) eiφi(τ)bi (τ)

]
(C.27)

=
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̄

iU
φ̇i (τ)− iφ̇i (τ) b̄i (τ) bi (τ)

]
. (C.28)

Similarly to the density-induced model in Appendix A, the static SV is treated with a
saddlepoint approximation. Since the chemical potential in this model is constant, the
entire expression averages out to a constant, which can be omitted. Thus, the partition
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function is
Z =

∫ {
Db̄Db

}∫
Dφ e−Sb[b̄,b,φ]e−Sφ[b̄,b,φ̇], (C.29)

where

Sb =

∫ β

0

dτ


∑

i

b̄i (τ)

(
∂

∂τ
+ µ̄

)
bi (τ)−

∑

〈i,j〉
tije
−iφij(τ)b̄i (τ) bj (τ)


 , (C.30)

Sφ =
∑

i

∫ β

0

dτ

[
1

2U

(
φ̇i (τ)

)2

+
µ̄

iU
φ̇i (τ)

]
. (C.31)

We integrate over the bosonic amplitudes, bi, which in this model is straightforward:
∫ {
Db̄Db

}
e−

∫ β
0 dτ {∑i[b̄i(τ)( ∂

∂τ
+µ̄)bi(τ)]−

∑
〈i,j〉 tije

−iφij(τ)b̄i(τ)bj(τ)} = detG (C.32)

= eTr lnG−1

, (C.33)

which leaves us with the phase-only partition function, Eq. (4.2),

Z =

∫
{Dφ} e−

∑
i

{∫ β
0 dτ

(
1

2U (φ̇i(τ))
2
+ µ̄
iU
φ̇i(τ)

)
+Tr lnG−1

}
, (C.34)

where G is the phase-only Green’s function, Eq. (4.4),

G−1 = G−1
0 − Tij = G−1

0 (1− TijG0) , (C.35)

with phase-phase correlator

G−1
0 =

(
∂

∂τ
+ µ̄

)
δij (C.36)

and the single-particle nearest neighbour exchange term,

Tij = tije
−i(φi(τ)−φj(τ)). (C.37)

We assume the phase-phase correlator G0 to be a sum of two components. The first
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component is the constant bosonic amplitude b2
0, which is the standard approximation

for G0. We obtain b2
0 by minimising the BHM Hamiltonian, Eq. (C.2), in terms of the

bosonic amplitude b0,
∂

∂b0

Ĥ (b0) = 0, (C.38)

which leads to Eq. (4.9),

b2
0 =

2 (zt+ µ̄)

U
. (C.39)

The second component of G0 is the imaginary time-dependent form in Eq. (C.36)
itself, which after Matsubara transform, as in Eq. (B.14), takes the form

G0 =
1

β

∑

n

−iωn + µ̄

ω2
n + µ̄2

. (C.40)

The next step is estimating the trace.

C.1.2 Approximating the trace

Usually, the trace in Eq. (C.34) is approximated to first order [46]. To look for bosonic
pairing terms, the following series expansion is used, approximated to second order:

ln

[
1

x
(1− xy)

]
= − lnx− xy − (xy)2

2
+O

(
x3
)
, (C.41)

which transforms the trace in Eq. (C.34) into Eq. (4.7),

Tr lnG−1 = Tr

[
− lnG0 − (TG0)− (TG0)2

2

]
(C.42)

= −Tr lnG0 − Tr (TG0)− 1

2
Tr (TG0)2 (C.43)

The first term in Eq. (C.43) is
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Tr lnG0 = Tr ln (G0 +G (τ)) = Tr ln

(
2 (zt+ µ̄)

U
+

1

β

∑

n

−iωn + µ̄

ω2
n + µ̄2

)
. (C.44)

The sum in here doesn’t converge and the first term is constant, so we ignore this term
altogether.

The second term in Eq. (C.43) is

Tr (TG0) = Tr (T (G0 +G (τ))) = Tr (TG0 + TG (τ)) (C.45)

= Tr (TG0) + Tr (TG (τ)) . (C.46)

Of these, the second term doesn’t converge, so we only consider the first one, which is

Tr (TG0) =
∑

〈i,j〉

∫ β

0

dτ

∫ β

0

dτ
′ 2 (zt+ µ̄)

U
tije
−i[φi(τ)−φj(τ)]δ

(
τ − τ ′

)
(C.47)

=
∑

〈i,j〉

2tij (zt+ µ̄)

U

∫ β

0

dτ

∫ β

0

dτ
′
e−i[φi(τ)−φj(τ)]δ

(
τ − τ ′

)
(C.48)

=
∑

〈i,j〉

2tij (zt+ µ̄)

U

∫ β

0

dτ 2 cos [φi (τ)− φj (τ)] (C.49)

=
∑

〈i,j〉
Jij

∫ β

0

dτ cos (φij (τ)) , (C.50)

where
Jij =

2tij (zt+ µ̄)

U
. (C.51)

Finally, the second order term in Eq. (C.43) is
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1

2
Tr (TG0)2 =

1

2
Tr [T (G0 +G (τ))]2 =

1

2
Tr [TG0 + TG (τ)]2 (C.52)

=
1

2
Tr
[
T 2G2

0 + T 2G (τ)2 + 2T 2G0G (τ)
]

(C.53)

=
1

2
Tr
(
T 2G2

0

)
+

1

2
Tr
[
T 2G (τ)2]+

1

2
Tr
[
2T 2G0G (τ)

]
. (C.54)

The last term of these doesn’t converge. The first is

1

2
Tr
(
T 2G2

0

)
=
∑

〈i,j〉

∫ β

0

dτ

∫ β

0

dτ
′
[

2 (zt+ µ̄)

U

]2

tij
tij
U
e−2i[φi(τ)−φj(τ)]δ

(
τ − τ ′

)
(C.55)

=
1

2

∑

〈i,j〉
tij
tij
U

[
2 (zt+ µ̄)

U

]2 ∫ β

0

dτ

∫ β

0

dτ
′
e−2i[φi(τ)−φj(τ)]δ

(
τ − τ ′

)

(C.56)

=
1

2

∑

〈i,j〉
tij
tij
U

[
2 (zt+ µ̄)

U

]2 ∫ β

0

dτ 2 cos 2 [φi (τ)− φj (τ)] (C.57)

=
∑

〈i,j〉
tij
tij
U

[
2 (zt+ µ̄)

U

]2 ∫ β

0

dτ cos 2 [φi (τ)− φj (τ)] (C.58)

=
∑

〈i,j〉
J
′

ij

∫ β

0

dτ cos [2φij (τ)] , (C.59)

where

J
′

ij = tij
tij
U

[
2 (zt+ µ̄)

U

]2

, (C.60)

and the second term is
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1

2
Tr
(
T 2G (τ)2) =

∑

〈i,j〉

∫ β

0

dτ

∫ β

0

dτ
′
t2ije
−2i[φi(τ)−φj(τ)]G (τ) δ

(
τ − τ ′

)
(C.61)

=
∑

〈i,j〉
t2ij

∫ β

0

dτ e−2i[φi(τ)−φj(τ)]G (τ) (C.62)

=
∑

〈i,j〉
2t2ij

∫ β

0

dτ cos {2 [φi (τ)− φj (τ)]}G (τ) . (C.63)

G (τ) is matsubara transformed and calculated separately, after which we merge both
double cosine terms with a single J ′ .

Thus we have reached the expected effective phase action with bosonic pairing, Eq.
(4.11), assuming U →∞,

S [φ] =

∫ β

0

dτ
1

U

∑

i

(
∂φi
∂τ

)2

+

∫ β

0

dτ


−J

∑

〈i,j〉
cosφij − J

′∑

〈i,j〉
cos 2φij


 . (C.64)

The single and pair coefficients are, respectively,

J =
2t (zt+ µ̄)

U
, (C.65)

J
′
= t

t

U

[
2 (zt+ µ̄)

U

]2

+ 2t
t

U

(
1

β

∑

n

−iωn + µ̄

ω2
n + µ̄2

)2

. (C.66)

Performing the Matsubara sum in the second term in J ′ ,

∑

n

(
1

β

−iωn + µ̄

ω2
n + µ̄2

)2

=
1

4
sinh−2

(
βµ̄

2

)
. (C.67)
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Finally, we obtain Eqs. (4.12-4.13),

J =
2t (zt+ µ̄)

U
, (C.68)

J
′
= t

t

U

[
2 (zt+ µ̄)

U

]2

+ t
t

U

z

2 sinh2
(
βµ̄
2

) . (C.69)

The effective phase model is now ready for analysis.

C.2 Self-consistent harmonic approximation

The variational principle, Eq. (1.29) states that, for any trial function S0,

F ≤ F̃ = F0 +
1

β
〈S − S0〉0 , (C.70)

where the average

1

β
〈S − S0〉0 =

1

βZ0

∫
{Dφ} e−S0[φ] (S − S0) (C.71)

is calculated within the trial system, with partition function

Z0 =

∫
{Dφ} e−S0[φ]. (C.72)

The trial free energy is defined as

F0 = − 1

β
lnZ0 = − 1

β
ln

∫
{Dφ} e−S0[φ]. (C.73)

The trial function we choose here is harmonic, with stiffness K, as in Eq. (1.33):

S0 [φ] =

∫ β

0

dτ


 1

U

∑

i

(
∂φi
∂τ

)2

+
K

2

∑

〈i,j〉
φ2
ij


 . (C.74)
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The trigonometric relations between phase operators can be rewritten as

〈cosφij〉 = e−
1
2〈φ2

ij〉0 , (C.75)

〈cos 2φij〉 = e−2〈φ2
ij〉0 , (C.76)

where the expectation values are also calculated within the trial system.

For simplicity, we designate the trial phase average as

Dij =
〈
φ2
ij

〉
0
. (C.77)

The effective action expectation value is

〈S − S0〉0 = − 1

Z0

∫
{Dφ} e−S0[φ]

×
∫ β

0

dτ


J

∑

〈i,j〉
cosφij + J

′∑

〈i,j〉
cos 2φij +

K

2

∑

〈i,j〉
φ2
ij


 (C.78)

= −
∫ β

0

dτ
∑

〈i,j〉

(
J

1

Z0

∫
{Dφ} e−S0[φ] cosφij

)
+

−
∫ β

0

dτ
∑

〈i,j〉

(
J
′ 1

Z0

∫
{Dφ} e−S0[φ] cos 2φij

)
+

−
∫ β

0

dτ
∑

〈i,j〉

(
K

2

1

Z0

∫
{Dφ} e−S0[φ]φ2

ij

)
(C.79)

=−
∫ β

0

dτ
∑

〈i,j〉

(
J 〈cosφij〉+ J

′ 〈cos 2φij〉+
K

2

〈
φ2
ij

〉)
(C.80)

=−
∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2〈φ2

ij〉 + J
′
e−2〈φ2

ij〉 +
K

2

〈
φ2
ij

〉)
(C.81)

=−
∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2
Dij + J

′
e−2Dij +

K

2
Dij

)
. (C.82)
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To find the stiffness K, we minimise the free action according to Eq. (1.34),

δF̃ = δ

(
F0 +

1

β
〈S − S0〉

)
= 0. (C.83)

The variation is a sum of two partial derivatives,
(
∂F̃
∂K

)

Dij

+

(
∂F̃
∂Dij

)

K

(
∂Dij

∂K

)
= 0. (C.84)

The stiffness derivative is

(
∂F̃
∂K

)

Dij

=
∂

∂K

(
F0 +

1

β
〈S − S0〉

)
, (C.85)

where

∂

∂K
F0 = − 1

β

∂

∂K

{
ln

∫
{Dφ} e−

∫ β
0 dτ

[
1
U

∑
i(
∂φi
∂τ )

2
+K

2

∑
〈i,j〉 φ

2
ij

]}
(C.86)

= − 1

β

∫
{Dφ} ∑〈i,j〉

(
−
∫ β

0
dτ
)

1
2
φ2
ije
−
∫ β
0 dτ

[
1
U

∑
i(
∂φi
∂τ )

2
+K

2

∑
〈i,j〉 φ

2
ij

]

∫
[Dφ] e

−
∫ β
0 dτ

[
1
U

∑
i(
∂φi
∂τ )

2
+K

2

∑
〈i,j〉 φ

2
ij

] (C.87)

=
1

2β

∫ β

0

dτ
∑

〈i,j〉

{
1

Z0

∫
{Dφ} e−

∫ β
0 dτ

[
1
U

∑
i(
∂φi
∂τ )

2
+K

2

∑
〈i,j〉 φ

2
ij

]
φ2
ij

}
(C.88)

=
1

2β

∫ β

0

dτ
∑

〈i,j〉

〈
φ2
ij

〉
=

1

2β

∫ β

0

dτ
∑

〈i,j〉
Dij (C.89)
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and

∂

∂K

(
1

β
〈S − S0〉

)
=

1

β

∂

∂K
〈S − S0〉 (C.90)

= − 1

β

∂

∂K

∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2
Dij + J

′
e−2Dij +

K

2
Dij

)
(C.91)

= − 1

2β

∫ β

0

dτ
∑

〈i,j〉
Dij. (C.92)

These two terms conveniently cancel out. As for the Dij-dependent derivative,

(
∂F̃
∂Dij

)

K

=
∂

∂Dij

[
F0 +

1

β
〈S − S0〉

]

K

(C.93)

=
∂

∂Dij

[F0]K +
1

β

∂

∂Dij

[〈S − S0〉]K (C.94)

= 0 +
1

β

∂

∂Dij

[〈S − S0〉]K (C.95)

=
1

β

∂

∂Dij

∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2
Dij + J

′
e−2Dij +

K

2
Dij

)
(C.96)

=
1

β

∫ β

0

dτ
∑

〈i,j〉

∂

∂Dij

(
Je−

1
2
Dij + J

′
e−2Dij +

K

2
Dij

)
(C.97)

=
1

β

∫ β

0

dτ
∑

〈i,j〉

(
∂

∂Dij

Je−
1
2
Dij +

∂

∂Dij

J
′
e−2Dij +

∂

∂Dij

K

2
Dij

)
(C.98)

=
1

β

∫ β

0

dτ
∑

〈i,j〉

(
−1

2
Je−

1
2
Dij − 2J

′
e−2Dij +

K

2

)
(C.99)

= − 1

2β

∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2
Dij + 4J

′
e−2Dij −K

)
(C.100)

Our minimisation condition, Eq. (C.84), is therefore
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− 1

2β

∫ β

0

dτ
∑

〈i,j〉

(
Je−

1
2
Dij + 4J

′
e−2Dij −K

)(∂Dij

∂K

)
= 0, (C.101)

from which the self-consistent equation emerges:

Je−
1
2
Dij + 4J

′
e−2Dij −K = 0, (C.102)

or, as in Eq. (4.15),
K = Je−

1
2
Dij + 4J

′
e−2Dij . (C.103)

To obtain a numerically solvable equation, we need an explicit form for the trial phase
average, Dij.

C.2.1 Calculating the trial phase average

Our average Dij, Eq. (C.77), is

Dij =
〈
φ2
ij

〉
0

=
1

Z0

∫
{Dφ} e−S0[φ]φ2

ij (C.104)

=
1

Z0

∫
{Dφ} e−S0[φ] [φi (τ)− φj (τ)]2 , (C.105)

where the trial partition function Z0, Eq. (C.72), is based on the trial effective action
S0, Eq. (C.74). We introduce the Fourier transform,

φi =
1

N

∑

k

eikriφk, (C.106)

onto the average itself:

Dij =
〈
φ2
ij

〉
=

1

N2

∑

k,k′

(
eikri − eikrj

) (
eik
′ri − eik′rj

)
〈φkφk′〉 . (C.107)
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Because of translational invariance,

〈φkφk′〉 = 〈φkφ−k〉 δk′,−k. (C.108)

Therefore,

Dij =
1

N2

∑

k,k′

(
eikri − eikrj

) (
eik
′ri − eik′rj

)
〈φkφ−k〉 δk′,−k (C.109)

=
1

N2

∑

k

(
eikri − eikrj

) (
e−ikri − e−ikrj

)
〈φkφ−k〉 (C.110)

=
1

N2

∑

k

(
eikrie−ikri − eikrie−ikrj − eikrje−ikri + eikrje−ikrj

)
〈φkφ−k〉 (C.111)

=
1

N2

∑

k

(
1− eik(ri−rj) − e−ik(ri−rj) + 1

)
〈φkφ−k〉 (C.112)

=
1

N2

∑

k

[
2−

(
eik(ri−rj) + e−ik(ri−rj))] 〈φkφ−k〉 (C.113)

=
1

N2

∑

k

{2− 2 cos [k (ri − rj)]} 〈φkφ−k〉 (C.114)

=
2

N2

∑

k

(1− cos krij) 〈φkφ−k〉 . (C.115)

Next is the straightforward in this case Matsubara transform,

Dij =
2

N2

∑

k,m

(1− cos krij) 〈φk,mφ−k,−m〉 . (C.116)

We also Fourier transform the trial effective action, S0 in Eq. (C.74). To that end,
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∑

i

φ2
i,m =

∑

i

1

N

∑

k

eikriφk
1

N

∑

k′

eik
′riφk′ (C.117)

=
1

N

∑

k,k′

φkφk′
1

N

∑

i

ei(k+k′)ri (C.118)

=
1

N

∑

k,k′

φkφk′δk,−k (C.119)

=
1

N

∑

k

φkφ−k, (C.120)

∑

〈i,j〉
φ2
ij,m =

∑

〈i,j〉
(φi,m − φj,m)2 =

∑

〈i,j〉
φ2
i,m −

∑

〈i,j〉
2φi,mφj,m +

∑

〈i,j〉
φ2
j,m (C.121)

=z
∑

i

φ2
i,m − 2

∑

i

(φi,mφi+1,m + φi,mφi−1,m) + z
∑

j

φ2
j,m (C.122)

=z
1

N

∑

k

φkφ−k − 2
∑

i

1

N

∑

k

eikriφk
1

N

∑

k′

eik
′(ri+1)φk′+

− 2
∑

i

1

N

∑

k

eikriφk
1

N

∑

k′

eik
′(ri−1)φk′ + z

1

N

∑

k

φkφ−k (C.123)

=
2z

N

∑

k

φkφ−k − 2
1

N

∑

k,k′

φkφk′
(
eik
′
+ e−ik

′
) 1

N

∑

i

ei(k+k′)ri (C.124)

=
2z

N

∑

k

φkφ−k − 2
1

N

∑

k,k′

φkφk′
(
eik
′
+ e−ik

′
)
δk′,−k (C.125)

=
2z

N

∑

k

φkφ−k − 2
1

N

∑

k

φkφ−k
(
e−ik + eik

)
(C.126)

=
2z

N

∑

k

φkφ−k −
2

N

∑

k

φkφ−k2 cos k (C.127)

=
2

N

∑

k

φkφ−k (z − 2 cos k) (C.128)

=
2

N

∑

k

φkφ−kfk, (C.129)
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where fk is the lattice factor,

fk = z − 2
d∑

j=1

cos (kja) . (C.130)

The transformed trial action is

S0 =
∑

m


ω2

m

βU

∑

i

φ2
i,m +

K

2β

∑

〈i,j〉
φ2
ij,m


 (C.131)

=
∑

m

(
ω2
m

βU

1

N

∑

k

φk,mφ−k,−m +
K

2β

2

N

∑

k

φk,mφ−k,−mfk

)
(C.132)

=
1

βN

∑

k,m

(
ω2
m

U
+Kfk

)
φk,mφ−k,−m. (C.133)

The inverse space average in Dij is

〈φk,mφ−k,−m〉 =

∫
{Dφ} φk,mφ−k,−m exp

[
− 1
βN

∑
k,m

(
ω2
m

U
+Kfk

)
φk,mφ−k,−m

]

∫
{Dφ} exp

[
− 1
βN

∑
k,m

(
ω2
m

U
+Kfk

)
φk,mφ−k,−m

] ,

(C.134)

which is two Gaussian integrals of the form:

∫
dx x2e−ax

2

∫
dx e−ax2 =

1

2a
. (C.135)

Therefore,

〈φk,mφ−k,−m〉 =
1

2 β
N

(
ω2
m

U
+Kfk

) =
N

2β
(
ω2
m

U
+Kfk

) (C.136)
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and Dij itself takes the form

Dij =
2

N2

∑

k,m

(1− cos krij)
N

2β
(
ω2
m

U
+Kfk

) (C.137)

=
1

βN

∑

k,m

1− cos krij
ω2
m

U
+Kfk

. (C.138)

The bond-averaged version is obtained by summing over nearest neighbours:

D̄ij =
1

z

∑

j

Dij =
1

βNz

∑

k,m

fk
ω2
m

U
+ K

2
fk
, (C.139)

where an additional factor of 1
2
has been appended to the K term to compensate for

overcounting [64]. After summation over Matsubara frequencies,

D̄ij =
1

Nz

∑

k

√
fkU

2K
coth

(
β

2

√
fkKU

2

)
. (C.140)

Finally, introducing density of states,

ρ (ξ) =
1

N

∑

k

δ (ξ − ξk) , (C.141)

into the lattice factor fk, Eq. (C.130), we obtain Eq. (4.16):

D̄ij =
1

z

∫
dξ ρ (ξ)

√
(z − ξ)U

2K
coth

(
β

2

√
(z − ξ)KU

2

)
. (C.142)

Finally, the full form of the self-consistent equation for stiffness K, Eq. (C.103), nor-
malised over U , is
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K

U
=2

t

U

(
z
t

U
+
µ

U
+

1

2

)
exp


− 1

2z

∫
dξ ρ (ξ)

√
z − ξ
2K
U

coth




√
1
2
K
U

(z − ξ)
2T
U




+

+ 4

(
t

U

)2

 z

2 sinh2
( µ
U

+ 1
2

2 T
U

) + 2

(
z
t

U
+
µ

U
+

1

2

)


× exp


−2

z

∫
dξ ρ (ξ)

√
(z − ξ)

2K
U

coth




√
1
2
K
U

(z − ξ)
2T
U




 (C.143)

The order parameters in the SCHA are defined as in Eqs. (1.37-1.39),

Ψ1 = 〈cosφi〉 = e−
1
2〈φ2

i 〉, (C.144)

Ψ2 = 〈cos 2φi〉 = e−2〈φ2
i 〉, (C.145)

By analogy to the trial phase average Dij, the single average can be rewritten using
the Fourier transform,

〈
φ2
i

〉
=

1

N

∑

k

〈
φ2
k

〉
, (C.146)
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which leads to Eq. (4.20),

〈
φ2
i

〉
=

2

N2

∑

k,m

〈φk,mφ−k,−m〉 (C.147)

=
2

N2

∑

k,m

N

2β
(
ω2
m

U
+Kfk

) (C.148)

=
1

βN

∑

k,m

1
ω2
m

U
+Kfk

(C.149)

=
1

βN

∑

k

β

2

√
U

Kfk
coth

(
β

2

√
fkKU

)
(C.150)

=
1

2N

∑

k

√
U

Kfk
coth

(
β

2

√
fkKU

)
(C.151)

=
1

2

∫
dξ ρ (ξ)

√
U

K (z − ξ) coth

(
β

2

√
(z − ξ)KU

)
. (C.152)

Entropy can also be calculated from the free energy F0,

S = β2∂F0

∂β
, (C.153)

as can any other thermodynamic function, based on temperature derivatives.



Appendix D

Magnetic density of states: analytical
formulas

The density of states on a square lattice with no orbital magnetic effects present is

ρ2 (ξ) =
K
(

1−
(
x
4

)2
)
θ
(
1−

∣∣x
4

∣∣)

π2
, (D.1)

where K (m) is the complete elliptic integral of the first kind and θ (x) is the unit step
function.

The derivation of analytical formulas for density of states functions in various mag-
netic fields is complex and can be found in [47]. Below are listed explicit formulas used
in numerics, at different values of the rotation frustration parameter f . All magnetic
effects modify the original square lattice density of states, ρ2.

D.1 f = 1/2

ρ21/2 (ξ) =
1

2
|x| ρ2

(
1

2

(
x2 − 4

))
. (D.2)
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D.2 f = 1/3

ρ21/3 (ξ) =
1

4
√

2

{
√

8− ξ2
∣∣ξ2 − 2

∣∣ ρ2
(

1

2
ξ
(
6− ξ2

))

×
[(
θ
(
−ξ2 + 2

√
3 + 4

)
− θ

(
6− ξ2

)) ∣∣∣sec
(
ϕ+

π

2

)∣∣∣+

+
(
−θ (ξ + 2) + θ (ξ)− θ

(
ξ −
√

3 + 1
)

+ θ
(
ξ +
√

6
))

sec
(
ϕ+

π

6

)
+

+
(
θ (ξ − 2)− θ (ξ) + θ

(
ξ +
√

3− 1
)
− θ

(
ξ −
√

6
))

sec
(
ϕ− π

6

)]}
,

(D.3)

where

ϕ =
1

3
tan−1




√
32− ξ2

(
ξ2 − 6

)2

ξ (ξ2 − 6)


 . (D.4)

D.3 f = 1/4

ρ21/4 (ξ) =
1

2

∣∣ξ2 − 4
∣∣ ρ2

(
ξ4

2
− 4ξ2 + 2

)[√
4− |ξ2 − 4|θ

(
−ξ2 − 2

√
2 + 4

)
+

+
√
|ξ2 − 4|+ 4

(
θ
(
8− ξ2

)
− θ

((
2
√

2 + 4
)
− ξ2

))]
. (D.5)
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D.4 f = 1/6

ρ21/6 (ξ) =
1

4 · 21/4

√
−ξ4 + 8ξ2 + 16

∣∣ξ4 − 8ξ2 + 8
∣∣ ρ2

(
ξ6

2
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3
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× 4
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(D.6)
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, (D.7)

where

ϕ =
1

3
tan−1

(√
−ξ4 + 8ξ2 + 16

∣∣ξ4 − 8ξ2 + 8
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ξ6 − 12ξ4 + 24ξ2 + 32

)
. (D.8)
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