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Abstract

Magnonics is a field of research and technology which uses magnetic nanostructures to
control the propagation and localization of magnetic excitations, called spin waves. This
control is realized by tailoring the geometry of nanostructure and modifying the internal
landscape of the magnetic field, or by coupling the spin waves to external biases. The
steering of localization and propagation is essential for information transmission. The
interplay between wave localization and propagation determines the speed and direction of
the wave signal, and even then whether the signal will be transmitted at all. The information,
however, is encoded not only in the amplitude of the waves but also in their phase. The
controlling of phase is essential for the implementation of wave phenomena and performing
the information processing within the paradigm of so-called wave computing. Spin waves are
very interesting candidates for the realization of the wave computing in nanoscale due to: the
complexity of the dispersion relation, the possibility of interacting with other kinds of waves
(e.g., elastic waves), and the tunability by on-demand applied external biases (magnetic field,
voltage, and temperature). On one side, all these features are very handy if one wants to
achieve specific behavior, there are many options to play with. However, from another angle,
spin waves are sometimes hard to enslave and intensive studies on how to manipulate them
are necessary.

The objective of my thesis is theoretical studies on spin waves in typical magnonic systems
in the form of planar nanostructures, like waveguides, magnonic crystals, and quasicrystals.
In my research, I worked on the coherent spin wave guiding in magnonic waveguides and on
the spin wave localization in patterned layers in the presence of defects and interfaces. I was
also interested in the steering of spin waves by non-magnetic signals. The thesis contains
four publications covering these topics. The papers are ordered by the date of publication. In
the first publication, I discussed the relation between the spatial distribution of spin waves in
magnonic crystals and the coupling with surface acoustic waves. We found that the change
of the direction of the external magnetic field modifies the amplitude of the spin waves
pumped by acoustic waves. The effect is attributed to the modification of the anisotropy of
magnetoelastic interaction in magnonic crystal. In the next work, I presented the studies
on the spin wave propagation in curved waveguides. The method of coherent transmission
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of the spin wave signal through the bent is proposed in the work. We used the lens of
graded refractive index to coherently refract the spin waves at the bent of the waveguide.
The later publication focuses on the spin wave localization at the interface between two
magnonic crystals. We formulated the condition of existence magnonic interface state using
the topological concept: Zak phase. In the last paper included in the thesis, I discussed the
impact of disorder in magnonic quasicrystal on the spin wave localization. We introduced
the localization measure, based on Shannon information entropy, which evaluates the spatial
(non)uniformity of the modes. We performed the numerical simulations for different levels
of disorder, related to the presence of so-called phasonic defects, and then observed the
enhancement of localization with increasing levels of disorder.



Streszczenie

Magnonika to dziedzina wiedzy, która wykorzystuje struktury w nanoskali do kontrolowa-
nia propagacji i lokalizacji fal spinowych. Może się to odbywać poprzez kształtowanie
geometrii nanostruktury lub modyfikację jej wewnętrznego pola magnetycznego. Kontrola
propagacji i lokalizacji jest kluczowa z punktu widzenia przesyłania informacji. Determinują
one prędkość oraz kierunek propagacji, a nawet to czy propagacja w ogóle następuje. W
przypadku ruchu falowego, informacja jest zakodowana nie tylko w amplitudzie, ale także
w fazie fali. W szczególności, to właśnie faza jest bardzo istotna dla obliczeń analogowych
z wykorzystaniem fal. Fale spinowe są tutaj ciekawym kandydatem do takich obliczeń,
gdyż złożoność ich relacji dyspersyjnej, możliwość oddziaływania fal spinowych z innymi
wzbudzeniami, takimi jak fale elastyczne, czy kontrola poprzez zewnętrzne parametry, takie
jak pole magnetyczne, pole elektryczne, temperatura, stwarza duże możliwości do projek-
towania układów. Tak duża elastyczność ma także swoje minusy, gdyż czasem zależność od
wielu parametrów jest trudna do kontroli. Rozeznanie tych procesów wymaga intensywnych
badań podstawowych.

Celem mojej pracy doktorskiej są teoretyczne badania fal spinowych w układach magnon-
icznych, takich jak falowody, kryształy i kwazikryształy. Rozważałem propagację fal
spinowych, lokalizację na defektach, czy interfejsach, a także to, jaki ma ona wpływ na
oddziaływania magnetoelastyczne. Dysertacja zawiera cztery artykuły naukowe, które są
uporządkowane w kolejności ich publikacji. Pierwsza praca dotyczy związku pomiędzy
przestrzennym rozkładem fal spinowych oraz sprzężeniem z powierzchniowymi falami
akustycznymi. W pracy pokazaliśmy, że kierunek zewnętrznego pola magnetycznego
zmienia amplitudę wzbudzanej magnetoelastycznie fali spinowej. Wynika to ze zmiany
anizotropii oddziaływań magnetoelastycznych w krysztale magnonicznym. W następnej pracy
rozważałem przesyłanie fal spinowych przez zakrzywiony falowód. W celu zachowania
koherentności sygnału, umieściliśmy na zagięciu falowodu element o zmiennym współczyn-
niku załamania dla fal spinowych, który ugina czoło fali zgodnie z geometrią falowodu.
Następna praca dotyczy lokalizacji fal spinowych na interfejsie pomiędzy dwoma kryształami
magnonicznymi. W pracy zostały sformułowane warunki na powstanie stanów interfej-
sowych, wykorzystujące pojęcie tzw. fazy Zaka. W ostatniej pracy dołączonej do rozprawy,
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poruszona jest tematyka nieporządku w kwazikryształach magnonicznych oraz wynikająca
z tego lokalizacja. Wprowadziliśmy miarę lokalizacji opartą na entropii informacyjnej Shan-
nona, która określa niejednorodność rozkład amplitudy modu. Wykonane zostały obliczenia
dla różnych poziomów nieporządku, wprowadzonego jako defekty fazonowe. Pokazaliśmy
jak nieporządek wpływa na wzrost lokalizacji fal spinowych.
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Chapter 1

Preface

The concept of spin waves is dated to 1930 when Felix Bloch found that low-energy exci-
tations in ferromagnets are delocalised[15]. He used the coupling in a spin system, called
exchange interaction, that was derived by Werner Heisenberg[44]. The phenomenologi-
cal, i.e., quasi-classical theory of spin waves as small perturbations around the equilibrium
state, which actually is used nowadays, was introduced in 1935 by Lev Landau and Evgeny
Lifshitz[73]. It is remarkable that key concepts after almost 100 years are still valid and are
able to explain more and more phenomena, even for atomistic spin dynamics[27]. What is
more, this field still attracts the attention of scientists and is a valid topic to write a disserta-
tion. Indeed, following ’Scopus’, the scientific database indexing research, the amount of
papers with the keyword: spin waves and magnonics increases exponentially till now. To be
fair, this can be said also about other topics, like electromagnetic waves[96], spintronics[46],
plasmonics[36], etc. since science expands tremendously. Nevertheless, it seems that
magnonics[67, 77, 62], a field of research that exploit spin wave dynamics in nano-structures,
is well established in the scientific community. Despite the fact that fundamental theory is
there for almost 100 years[10], the studies on spin waves in nanostructures face intriguing
fundamental problems and inspire novel applications[9, 19]. One of the reasons is that the
magnetic moments interact with themselves in a nontrivial way. Due to the interplay between
the exchange, dipolar interactions, and Dzyaloshinskii-Moriya, magnetization can form
complex textures, even in relatively simple systems like plane film. Therefore, developing
new materials with re-configurable magnetic textures which support the complex magne-
tization dynamic[134] is a vital part of the field of magnonics[108]. Not to mention, that
development in fabrication techniques[29] opens many ways to achieve desired properties,
by shaping the geometry at nanometer sizes. The magnonic subsystem can also interact with
others, like the phononic subsystem, which is an area of intensive research as well[129]. We
should not also forget about the fact that the Landau-Lifshitz equation [72] is intrinsically



2 Preface

nonlinear[56]. So, the field was established almost a century ago, but the real potential is
exploited recently when scientists’ dreams can come true in laboratories with state-of-the-art
technologies[9, 19].

The driving force behind the progress in magnonics is the belief that current technology,
i.e. Complementary Metal Oxide Semiconductor (CMOS) technology[1], needs to be
substituted by some alternative, offering breakthroughs in terms of speed and efficiency. The
progress in the semiconductor industry is made now with increasing struggle and we are
inevitably approaching physical limits in terms of reducing the size of a single transistor, and
its density. This limitation is described by Moore’s law[83], which refers to the empirical
rule that the number of transistors on a microchip doubles every two years. At the moment,
current technology, that already revolutionized our world most likely will not bring us another
breakthrough[88]. Much research is centered around some specific kinds of excitations and
quasiparticles, which could substitute the transport of electrons out there. And all of them
have unique properties. Among them, one can distinguish the use of the spin degree of
freedom for representing and transmitting information in the form of collective excitation,
spin waves. Magnonics, at first glance, seems to be a very interesting candidate, because spin
waves carry low energies, and they are operating with high frequency[25, 85, 21]. However,
it should be stated clearly that this concept is dramatically different, in the sense that spin
wave is a wave phenomenon and thus making a circuit would require different philosophy in
design, that so well established semiconductor industry operating with billion dollar budgets
and business plans for next decade would not be willing to support it. As I think that the
paradigm of CMOS as a central concept remains true for my generation, I believe also
that we can observe some spectacular achievements in a nontrivial application, that could
be integrated with existing technology and used in some applications. Maybe we are still
waiting for discovery. Unconventional computing[126, 91] or quantum magnonics[135] just
to mention few examples, are starting to be explored.

In my thesis, I focused on the essential properties related to propagation and localization
of spin waves. In other words, the publications included in the dissertation are concentrated
on the fundamental research in the field of magnonics, though the gained knowledge can
be potentially used in the application. I investigated the building blocks of magnonics[77],
namely magnonic waveguides, and magnonic crystals. The first object is an indispensable
part of any circuit since the signal must flow between elements performing operations. As a
‘passive’ element in the system, ideally, it should not disturb the properties of the signal. In
the case of wave phenomena, information can be encoded into the phase and amplitude, so
keeping them not perturbed is essential. Magnonic crystals are artificially ordered materials,
where magnetic properties are periodic and in the case of quasicrystals have non-periodic
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long-range order in one- two-, or three- dimensions. They can be used as an ‘active’ part of
the circuit, that process the spin wave signal.

The complexity of the spin wave dynamics in partially confined systems: planes and
wires, is manifested by the interplay between the propagation and localization. The relation
between these two competitive features determines how the information encoded in spin
waves is transmitted and distributed.

The term wave localization refers to the situation when waves are spatially nonuniform
and one can distinguish the area of concentration. Controlling the localization of coherent
waves is essential for wave computing[126]. In the dissertation, I look at this property from
different angles, i.e., by considering different systems, and mechanisms that eventually lead
to localization. The diversity of the magnonic systems and the mechanisms of localization
for spin waves is particularly large.

The term wave propagation is related to the transmission of waves, their velocity, and
their direction. One can directly extract a lot of information about the propagation of spin
waves from the dispersion relation, which links the wavevector and the frequency of the wave.
The dispersion relation for spin waves can have many unusual features which are responsible
for: field-controlled anisotropy of propagation, non-reciprocal propagation, and long waves
at high frequencies. Also, in the case of crystals and quasicrystals, the dispersion relation
reveals the position of the band gaps -– the range of the frequency at which propagation
through the crystal is forbidden, and only localized modes can be observed if some conditions
are fulfilled.

I think that magnonics is a promising field and spin wave computing in the nanoscale can
provide some solutions for the bottlenecks in the development of conventional electronics[88].
I hope that magnonics initiates a new direction in information processing in a similar way[20]
as the discovery of semiconductors revolutionized electronics[8].

The thesis is composed of five chapters, two appendixes, and a bibliography. Below, a
short description of the content is presented.

Chapter 1 (current one) is a preface containing an introductory part to the thesis. It
presents the motivation for the studies and outlines the content of the dissertation.

Chapter 2 introduces the topic of spin waves and presents the basic theoretical back-
ground needed to understand the work, like the concept of dispersion relation in the confined
system, or mechanisms of localization. There is also presented the derivation of interaction-
specific components of effective field used in numerical calculations.

Chapter 3 is focused on numerical methods and tools used in my research. It discusses
two numerical methods I used. In the case of the plane wave expansion method, I presented
the derivation of the eigenvalue problem and discussed the implementation of this method
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in a programming language. For micromagnetic simulations, there are presented the key
assumptions and workflow that I developed to calculate spin wave spectra.

Chapter 4 presents the research conducted during my studies, related to the topic of the
dissertation. I selected and included in the thesis four peer-reviewed publications, where
my contribution was meaningful. Before each paper, the motivation for the studies, the
main findings of this work, and my contribution are presented. For the convenience of
cross-reference within the dissertation, I index these publications with the ‘P’ symbol.

• P1 - Driving magnetization dynamics in an on-demand magnonic crystal via the
magnetoelastic interactions, discuss the role of spin wave localization within the
magnonic crystal by changing the angle of the in-plane external magnetic field with
respect to the periodicity direction. Surface acoustic waves that are induced in the
system, via magnetoelastic coupling can parametrically induce spin waves. The
dependency of the strength of this coupling in the function of the angle between the
in-plane magnetic field and wave vector in the thin magnetic film is known and can
be theoretically predicted. However, in the case of a magnonic crystal, the spatial
distribution of spin waves starts to be nontrivial and we report how it can additionally
affect the magnetoelastic coupling.

• P2 - Anomalous refraction of spin waves as a way to guide signals in curved magnonic
multimode waveguides address the issue of signal transmission by the spin wave in
the curved multimode magnonic waveguide. We exploit the concept of graded-index
material to propose a design of the waveguide’s bent that can tilt the wavefront and
thus avoid scattering of fundamental mode into the quantized modes.

• P3 - Interface modes in planar one-dimensional magnonic crystals is devoted to the
topic of interface states induced between two joint semi-infinite magnonic crystals. We
exploit the works of Zak[137, 138], to derive the existence condition for inducing the
interface state that can appear in the common band gap of the two subsystems. We
verify the theoretical prediction numerically and discuss the results for the exchange
spin waves and exchange-dipolar spin waves.

• P4 - Spin-wave localization on phasonic defects in one-dimensional magnonic qua-
sicrystal explore the disorder in the quasiperiodic structure. We investigated the impact
of so-called phasonic defects on the spectrum of spin waves. We show how frequency
gaps are narrowing and localization of the spin wave modes is enhanced with increasing
levels of disorder.

Chapter 5 is a summary that presents concluding remarks.
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Appendix 1, contains the list of my publications, including the works which are discussed
in the thesis.

Appendix 2, includes the statements about the contribution other co-authors to the
publications P1-P4. My contribution to the works P1-P4 are described in Chapter 4, in the
commentaries preceding each publication.





Chapter 2

Introduction to spin waves

2.1 Landau-Lifshitz equation

The dynamics of the magnetic moment M can be classically described by the Landau-Lifshitz
equation[38, 111]:

dM

dt
=−µ0 |γ|M ×Heff, (2.1)

where Heff is an effective field. The effective field includes both the external field H0, and
the internal field Hint, resulting from the interactions between magnetic moments or other
subsystems in the material. The coefficient γ is called the gyro-magnetic ratio and relates the
magnetic moments to the angular momentum: γ = M /J. For negatively charged particles
(e.g., for electron) the angular momentum (spin) is oriented opposite to the direction of the
magnetic moment and therefore their gyro-magnetic ratio is negative. The equation (2.1) can
be classically derived from the equation of motion for angular momentum:

dJ
dt

= T , (2.2)

where the torque T has magnetic origin: T =M ×Beff = µ0M ×Heff. The Landau-Lifshitz
equation (2.1) describes dynamics that conserve the length of the magnetic moment vector.
It can be noticed after calculations of scalar product of both sides of the equation (2.1) with
M (t) which gives the relation: ∂ |M (t)|2/∂ t = 0 =⇒ |M (t)|= const.

For continuous medium the equation can be written in the local form, where the mag-
netization vector M, as a magnetic moment M per unit of volume v (M = dM /dv),
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is introduced:

∂M(r, t)
∂ t

= γ(r)µ0M(r, t)×Heff(r, t)︸ ︷︷ ︸
T(r,t)

, (2.3)

where T is a torque per unit volume of the magnetic material. The internal components of ef-
fective field are determined by the spatial distribution and temporal changes of magnetization
vector: Hint(r, t) = Hint(M(r, t)). This feature makes the equation (2.3) non-linear in the
general case. Therefore, the Landau-Lifshitz equation describes the variety of dynamical ef-
fects including both the non-linear and linear phenomena, e.g., magnetization switching[68],
domain wall motion[51, 31], vortex dynamics[40], and spin wave propagation[111].

The magnetization in the solids results primarily from the presence of magnetic moments
of electronic spins. Therefore in further consideration we assume that γ(r)< 0.

2.2 Effective field

In the following section, I will describe several components of the effective field, that I took
into consideration during my calculations.

2.2.1 Exchange field

Despite the fact that electrons interact electrostatically with each other, the dominant force
in the very short range results from the Pauli exclusion principle. Thus, the theoretical
framework describing ferromagnetism is based on this principle. Spontaneous configuration
of magnetic moments is the parallel alignment of the electron’s spins, so one can model
the Hamiltonian of electronic spins[44]: Hex,i, j =−Ji, jSi ·S j. The parameter Ji, j is called
exchange integral and depends on the overlapping of electron wave functions located at the
neighboring sites i and j.

In the semi-classical interpretation, the exchange energy of selected magnetic moment
(macrospin) γℏSi in the field of neighboring macrospins γℏS j is given by the formula:

Hex,i =− ∑
j

(NN of i)

Ji, jSi ·S j, (2.4)

where the summation is done over all of the nearest neighbors (NN). The vectors Si,S j

can be oriented arbitrary in space, without the constraints describing the quantization of
the angular momentum. However, in the case of application of Eq. (2.4) to the continuous
model of magnetization dynamics, i.e., to the Landau-Lifshitz equation (2.3), the following
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assumptions are made: (i) the exchange interaction is isotropic, i.e., Ji, j = J for any pair of
NN, (ii) there is a continuous function describing the magnetic moments in the ferromagnets,
(iii) the angle between NN are small, that after expanding mathematical function in Taylor
series we can limit ourselves only to the linear component. We start derivation from defining
the magnetization vector, that combine the values of Sl at discrete locations rl with continuous
function M(rl):

M(rl) =
N
V

µBgSl, (2.5)

where N is a number of spin in volume V of the unit cell, µBg is Bohr magneton, and
g = ℏ/µBγ is the so-called g-factor. After expanding the magnetization vector (2.5) into
the Taylor series, to describe the small spatial changes of the orientation in the vicinity of
position rl , and assuming that the exchange integral is the same for all pairs of neighboring
spins as well as the distances between them are equal, we can derive the formula for the
density of exchange energy εex(rl) = dHex,l/dv in the form:

εex = λM2
S +

A
M2

S
∑

i
(∂xiM)2 . (2.6)

Equation introduces to the model a parameter A that is called exchange stiffness constant,
which reflects the microscopic origin of the formula. It is related to the exchange integral
A = JS2n

a (for cubic lattices) , where S = |S1|= |S2|, a is the lattice constant and N = n/a3 is
a number of spins/atoms per unit cell. The saturation magnetization can also be related to
microscopic parameters: MS = NµBgS. In the continuous model, the material parameters
can be, in general, spatially dependent: MS(r), A(r). The parameter λ is equal to: − ZJ

Nµ2
Bg2

(where Z is the number of NN for the selected spin).
Total exchange energy stored in magnetic material can be calculated as an integral of

density energy over volume:

Eex =
∫

v
εexd3r =

∫

v
λM2d3r+

∫

v
A

[(
∂x

M
M

)2

+

(
∂y

M
M

)2

+

(
∂z

M
M

)2
]

d3r. (2.7)

In a linear regime, the magnetization vector can be separated into static and dynamic parts.
We assume that the material is magnetically saturated which means that the static component
of magnetization is lying along the static effective magnetic field. Thus Mz ≡ MS(r)≡ MS.
Dynamical components can be presented as a vector: m = (mx,my). Total exchange energy
can be then rewritten as:

Eex =
∫

v
λM2

Sd3r+
∫

v
A
(

∇
m
MS

)2

d3r (2.8)
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Calculating derivatives and assuming that magnetization saturation is described by Heav-
iside function θ , i.e., in the considered system is composed of the domains of materials that
have sharp interfaces:

MS (r) = (MS,A −MS,B)θ (r− rinterface) , (2.9)

we present a formula for the exchange energy:

Eex =
∫

v
λM2

S (r)d3r+
∫

v

A
M2

S (r)
(∇m)2 d3r. (2.10)

The effective field is calculated as a functional derivative of the density of exchange interac-
tion with respect to magnetization vector[66]:

Hex (r) =− 1
µS

δEex

δM
=− 1

µ0

[
δEex

δmx
,
δEex

δmy
,
δEex

δMS

]
. (2.11)

The effective field reads as:

Hex =
1
µ0

∇
(

2A
M2

S

)
∇M, (2.12)

where the first term in Eq. (2.10) is the static part and thus is irrelevant for the derivation of
the exchange field (2.12) [66]. Concluding, in the uniformly magnetized sample, the static
component of the exchange field is equal to zero, and the exchange field is expressed only by
the dynamic part, which for the spin wave of the frequency ω is:

Hex(r, t) = hex(r, t),=
1
µ0

∇
(

2A
M2

S

)
∇m(r, t) (2.13)

2.2.2 Dipolar field

The dipolar interaction can be described using the principles of classical electromagnetism.
The energy of dipolar interaction between the pair of spins can be described by the formula
derived on the ground of magnetostatics[48]:

Hd,i, j = µ0
(gµB)

2

4π

(
Si ·S j

r3
i, j

−3

(
Si · ri, j

)(
S j · ri, j

)

r5
i, j

)
, (2.14)

where ri, j is a vector connecting Si and S j. The energy (2.14) depends strongly on the relative
orientation of the spins. The dipolar interaction (2.14) can be repulsive, when ri, j ⊥ Si,S j or
attractive for ri, j ∥ Si,S j, which illustrates the anisotropic character of this interaction.
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In order to calculate the dipolar energy of i-th spin in the magnetic system, we need to
sum up the contributions from all dipoles:

Hd,i = ∑
j

( j ̸=i)

Hd,i, j. (2.15)

Due to the long range of dipolar interactions, the sum (2.15) above is strongly dependent on
the shape of the magnetic body.

Equation (2.14) can be applied for magnonics, because the investigated range is within
several or dozens of GHz, where the retardation effect is still marginal, and we do not need to
solve the full electromagnetic problem[125] where the electromagnetic coupling and Lorentz
invariance are granted. Thus, we can assume that the electric field is not induced by varying
in time the magnetization within the magnetic body. The lack of feedback from a magnetic
field to an electric field in magnonics means that the electric currents and electric fields can
be only the sources of the external magnetic field but they are not involved in the mediation
of interactions between processing magnetic moments.

The effective magnetic field related to dipolar interaction can be derived in a continuous
medium from the energy formulated in the lattice model (2.14), in a similar way as it was
presented for the effective exchange field in Sec.2.2.1. However, we will use a much simpler
approach based on so-called magnetostatic approximation[111], which reflects the omission
of retardation effect. In the magnetostatic approximation, the Maxwell equation for the
rotation of magnetic field H reduces to:

∇×H = 0. (2.16)

For such field, called magnetostatic field Hd, we can introduce the scalar potential Φ [38,
111]:

Hd =−∇Φ, (2.17)

called magnetostatic potential. From another Maxwell equation, the Gauss equation for
magnetism:

∇ ·B = 0, (2.18)

we obtain the Poisson(Laplace) equation for magnetostatic potential inside Φin (outside Φout)
the magnetic material: 




∆Φin = ∇ ·M,

∆Φout = 0.
(2.19)
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The requirement of the continuity of the normal component of the B-field and the tangential
component of the H-field on the interface leads to the following boundary conditions for
magnetostatic potential:

Φin −Φout = 0,
∂Φin

∂ n̂0
− ∂Φout

∂ n̂0
= M · n̂0, (2.20)

where n̂0 is the unit vector normal to the interface. The solution of Eqs. (2.19) can be written
in a form[48]:

Φ(r) =− 1
4π

∫

V

∇′ ·M(r′)
|r− r′| dV ′+

1
4π

∮

S

n̂′0 ·M(r′)
|r− r′| dS′, (2.21)

where V and S are the volume and the surface of the magnetic body, respectively. The first
term in (2.21) describes the contribution of the volume magnetic charges which appear in
non-collinear magnetic configurations where ∇ ·M(r) ̸= 0. The second term in (2.21) is
related to the presence of surface magnetic charges induced on the interfaces where the
normal component of magnetization is discontinuous. It refers also to the surfaces of the
magnetic body separating magnetic (M ̸= 0) and nonmagnetic medium (M = 0).

In the linear approximation, the demagnetizing field can be presented as a sum of static
component and dynamic Hd(r, t) = Hd(r)+hd(r)eiωt , where the static component lies along
the direction of the external magnetic field, and two dynamic components are perpendicular.
In the general case, finding of demagnetizing field must be done via the self-consistent
procedure, since demagnetizing field affects magnetization dynamics and vice versa. It is
clear from the formula (2.21), where the dipolar interactions are nonlocal and depend on
geometrical factors like shape or size but also on the magnetic configuration. However, the
magnetic configuration is determined not only by the geometry of a magnetic body but also
by the external magnetic field. Therefore, the interplay between the geometry and applied
field is responsible for forming the magnetic landscape in which the magnetic interactions
couple the precessing magnetic moments.

For periodic structures in saturation state, i.e., for magnetically saturated magnonic
crystals, the calculations of demagnetizing field can be performed semi-analytically by
applying the Fourier transform to Eqs. (2.19). The most common form of magnonic crystals
is the planar structure where the ferromagnetic film is periodically patterned in one or two
directions. The demagnetizing field in these structures can be presented in terms of auxiliary
functions ψ(x), ψ(z), ψ(z), strictly related to magnetostatic potential Φ, as it was presented in
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the work by Kaczer and Murtinova[54]:

Φ(r) =−
(

∂ψ(x)(r)
∂x

+
∂ψ(y)(r)

∂y
+

∂ψ(z)(r)
∂ z

)
, (2.22)

For thin film (of the thickness 2a) and periodic distribution of magnetization M (described
by the Fourier components M(G)), the formulas read as, for the external area:

ψ(α)
out (r) = ∑

G ̸=0

Mα (G)

G2
sinh(Ga)

sinh(Ga)+ cosh(Ga)
eiG·r∥e−G(z−a), (2.23)

and internal area:

ψ(α)
in (r) = ∑

G

Mα (G)

G2

(
1− sinh(Ga)

sinh(Ga)+ cosh(Ga)

)
eiG·r∥ − 1

2
Mα (0)

(
z2 −a2) , (2.24)

where α = {x,y,z}, G = [Gx,Gy], and r∥ = [x,y].
To obtain the demagnetizing field Hms =

[
Hd,x,Hd,y,Hd,z

]
one needs evaluating the

following expressions:

Hd,x =
∂ 2ψ(x)

∂x2 +
∂ 2ψ(y)

∂x∂y
+

∂ 2ψ(z)

∂x∂ z
,

Hd,y =
∂ 2ψ(x)

∂y∂x
+

∂ 2ψ(y)

∂y2 +
∂ 2ψ(z)

∂y∂ z
,

Hd,z =
∂ 2ψ(x)

∂ z∂x
+

∂ 2ψ(y)

∂ z∂y
+

∂ 2ψ(z)

∂ z2 . (2.25)

The Eqs. (2.23-2.25) can be used for finding the static and dynamic components of demagne-
tizing field magnetization independently. The mathematical form of the formulas (2.23-2.25)
is convenient for implementing them in the plane wave expansion method (see Sec. 3.1), for
the calculation the spin wave dispersion relation in magnonic crystals.

2.2.3 Magnetoelastic field

Every nanostructure is characterized by elastic properties, regardless if it is magnetic or
not[101]. The most common realization of a magnonic system is planar ferromagnetic nanos-
tructure deposited on a non-magnetic substrate – see Fig. 2.1. The characteristic dimensions
of the planar magnonic nanostructure are hundredths of nm (for in-plane dimensions: widths
of stripes, sizes of dots/holes) and single tens of nm (for out-of-plane dimensions: thicknesses
of layers). For such systems, the coupling between dipolar-dominated SWs and surface
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acoustic waves (SAWs) can be observed. The SAWs have the amplitude concentrated close
to the surface of the elastic substrate, where the magnonic structure is deposited. The spatial
concentration of SAWs and SWs in the same area, and the compatible range of frequencies
with wavevectors for both excitations make the dynamical coupling between SAWs and SWs
possible if the magnetic medium is magnetostrictive.

surface acoustic waves

Love

Rayleigh/Sezawa

||

h m
e,

α

||

h m
e,

uy

ux

uz

Love Rayleigh Sezawa

surface acoustic waves

spin waves

x

x

y

y

z

H0
m

m

α
k

α

Fig. 2.1 An exemplary system where SW and SAW can mutually propagate. Dark blue
is a magnetic layer with finite thickness, and light blue is a substrate that is assumed to
have an infinite thickness in comparison to the wavelength of the excitation. The SW can
propagate only in the magnetic top layer, and the directions of the dynamical components
are perpendicular to the in-plane external magnetic field. Sketch presents polarization of
three kinds to SAW, namely Love, Rayleigh, Sezawa. Polar plots on the left show the angular
dependence of magnetoelastic coupling (expressed the corresponding component of effective
field) for those three SAWs.

Here, I outline the formal description of the impact of the elastic waves on the SW
dynamics. For the magnetoelastic systems presented above, the continuous model[95, 101]
will be appropriate to describe the dynamics of elastic waves and their coupling to SWs.

The displacement vector is a continuous function of position u(r) and expresses the
deformation of the medium:

u(r) = r− r0,

i.e., the difference between the initial position r0, and the corresponding position in deformed
medium r0. The homogeneous displacement u = const(r) is equivalent to the translation of
the whole body and does not generate mechanical stress. Therefore, we need to consider the
gradient of u(r), which is a tensor: ∇u(r). The asymmetric component of ∇u(r) expresses
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the rotation of medium. The uniform rotation must be neglected because is equivalent to the
rotation of the whole body. The non-uniform rotation is usually small[131], referring to the
symmetric component of the displacement gradient, and can be neglected. Therefore, the
stress results predominately from the presence of the symmetric component of ∇u(r), which
is called strain tensor:

ε =
1
2
(
∇u+∇uT) , εpq =

1
2

(
∂up

∂xq
+

∂uq

∂xp

)
, (2.26)

where the later expression in (2.26) is valid in Cartesian coordinates (r = [x1,x2,x3]). The
equation of motion in elastodynamics is a local formulation of Newton’s second law of
dynamics. In the absence of external forces, we can write:

ρ
∂ 2u
∂ t2 = fel, (2.27)

where ρ denotes mass density and fel is body force density – the net, internal, elastic forces
density coming from the environment of the point r. The body force density can be formally
expressed as a divergence of the so-called Cauchy strain tensor: fel = ∇ ·σ , which gives full
information about the stress at point r. For small deformations, i.e., in a linear regime, we
can write a local version of Hook’s law, which relates stress and strain tensors: σ = c ·ε . The
symbol c is stiffness tensor, which is a four-rank tensor describing the material properties of
the elastic medium and contains, in the general case, 21 independent components (due to the
symmetry of strain and stress tensors). The elastodynamic equation of motion can be then
written in Cartesian coordinates in the following form:

ρ
∂ 2up

∂ t2 = ∑
q,l,m

cpqlm
∂ 2um

∂xq∂xl
. (2.28)

The microscopic mechanisms leading to the (dynamical) coupling between magnetic and
elastic systems are complex[38]. In the continuous model, we can use the phenomenological
description of magnetoelastic interaction. If we limit our considerations to the case when the
deformation is expressed only by strain tensor (i.e., when we neglect the magneto-rotation
coupling[131]) then the equation for magnetoelastic energy density has the following form
in Cartesian coordinates:

fme =
1

M2
S

3

∑
i, j=1

εi jMiM j
(
b1δi j +b2

(
1−δi j

))
. (2.29)



16 Introduction to spin waves

This intrinsic magnetoelastic coupling can be observed in a selected class of materials,
characterized by non-zero magnetoelastic coupling constants b1 and b2.

The coupling between the equations of motion for SWs (2.3) and elastic waves (2.27)
can be formally implemented by addind magnetoleastic contribution to effective magnetic
field hme and to the stress tensor σme, respectively:

hme,l =− 1
µ0

∂ fme

∂Ml
, σme,pq =

∂ fme

∂εpq
(2.30)

The solution of the full magnetoelastic problem gives information about the spectrum and
profiles of hybrid magnetoelastic modes. In my research, however, I used the simplified
approach. In work P1, I assumed that SAWs are generated in the film and pump SWs. In
these calculations, we neglect the feedback from magnetization dynamics to elastic dynamics,
and took for granted that SWs are excited dynamically by given magnetoelastic field hme. In
work P1, we looked for the condition which has to be fulfilled to observe the pumping of
SWs by SAW, in a non-homogeneous magnetic layer deposited on a nonmagnetic substrate.

From the general formula (2.30), we can derive the amplitudes of the magnetoelastic
field which drives the SWs in in-plane magnetized film. The equations for in-plane and
out-of-plane components of hme in Cartesian coordinates (see Fig. 2.1) take a form:





µ0hme,∥ = 2b2 (εxz cosφ + εyz sinφ) ,

µ0hme,⊥ = b1 (εxx − εyy)sin2φ −2b2εxy cos2φ ,
(2.31)

where φ is the angle between the in-plane applied external magnetic field and wave vector.
The polar plots on the left side of Fig. 2.1 present schematically strength of magnetoelastic
coupling. We can see that only at specific angles φ can the SWs can be effectively excited by
the SAW of specific polarization (i.e., by Rayleigh SAW or by Love SAW [17, 6]).

2.3 Magnonic structures and their dispersion relations

This section introduces the description of the magnonic systems that were by in the thesis.
Analysis of dispersion relation is crucial since it governs the way of propagation.

2.3.1 Thin film

The magnonic system is typically considered with the confinement in at least one direction,
mostly due to constraints in fabrication and characterization techniques. Moreover, the
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appearance of surfaces and interfaces is crucial for the activation of dipolar interaction in
magnetically saturated samples. In bulk, homogeneous, and magnetically saturated material
the demagnetizing fields are absent and the spin wave dynamics is governed only by exchange
interaction[38].

In this section, the considered system is a plane film, where the magnetization dynamics
is confined to one dimension, while the SW can freely propagate in the plane of the film.
The most general analytical theory of SW dispersion relation in the ferromagnetic film was
developed in the 80s of the last century by Kalinikos and Slavin[55]. The equation describing
the dispersion relation in thin film with the arbitrary angle between the direction of SW
propagation and the external magnetic field (strong enough to saturate the sample) takes the
form:

ω (k) = ω(k,φ ,θ) = γµ0

√
(H0 −MS +MSl2

exk2)(H0 −MS +MSl2
exk2 +MSF (φ ,θ ,k)),

(2.32)
where auxiliary function F (φ ,θ ,k) can be written as:

F (φ ,θ ,k) = P(kd)+ sin2 θ
[

1−P(kd)
(
1+ cos2 φ

)
+

MSP(kd) [1−P(kd)]
H0 +MSl2

exk2 sin2 φ
]
,

with the function P(kd) defined as:

P(kd) = 1− 1− e−kd

kd
. (2.33)

The symbol d is the thickness of the film, θ is the polar angle (out-of-plane angle) between
external magnetic field H0 and direction of SW propagation k/k and φ is azimuthal angle
between in-plane projection of H0 and k/k. The parameter lex = 1/MS

√
2A/µ0 denotes

so-called exchange length. While the SW can freely propagate in the plane of the film, the
perpendicular component (koop - out-of-plane) is quantized, i.e., only SW with wavelengths
that are multiple of thickness d is allowed:

koop =
π (n−1)

d
, (2.34)

where n = 1,2,3, . . .. For n > 1 Eq. (2.32) describe so-called perpendicular standing spin
waves (PSSW). Formula (2.32) assumes no pinning on the interface and is simplified to the
case when there is no surface anisotropy[94] – see Sec.2.3.2 for more information about
quantization and pinning of SWs in confined dimensions. In my research, I mostly neglected
PSSW: the considerations were limited only to the case n = 1.
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The equation (2.32) reflects the complexity of SW dispersion relation, illustrated in
Fig.2.2. The analysis of Eq. (2.32) can give some insight to the interplay between dipolar
and exchange interaction (see also Sec. 2.2.1 and 2.2.2 for more information about these
interactions). The terms proportional to k2 come from the exchange field, and they are
independent on the geometrical factors. The terms associated with the dipolar field have
a more complex form. The dipolar terms scale with kd, which means that thickness of
film d is critical. They are expressed by function P(kd) (2.33) containing the exponential
function e−kd , which makes the dispersion relation ω(k) linear in the vicinity of k = 0, and
non-analytic at k = 0 (the slope of ω(k) must change a sign at k = 0 when φ → φ + π ,
because of reciprocity of SWs’ propagation: ω(k) = ω(−k) resulting from the conservation
of time-reversal symmetry). For small wave vectors the slope of the dispersion relation,
which is the measure of the strength of interaction, increases linearity with the changes
in the film’s thickness d. The function P(kd) ranges from 0 (for k = 0) to 1 (for k → ∞),
as the system transits from dipolar to exchange regime. For k = 0 the dispersion relation
(2.32) reproduces the Kittel formula[59] for ferromagnetic resonance frequency and includes
only static demagnetizing fields, dependent on the orientation of the external field saturating
the sample. For k → ∞ the dispersion relation is isotropic (do not depends on θ nor φ )
and quadratic in k (the dipolar terms responsible for spin wave dynamics are non-active:
P(kd) = 0).

It is worth noting that the dispersion relation in dipolar dominated regime (i.e., for small
k when quadratic exchange terms can be neglected) is strongly anisotropic for small values
of θ (i.e., when the external field is applied with a significant in-plane component). The
slope of dispersion relation changes substantially with the polar angle φ (angle between the
wave vector and in-plane projection of external field), which can even lead to the reverse
of its sign and form a saddle-like shape of dispersion relation in the vicinity of k = 0 (see
Fig.2.2(a)). For dipolar-dominated SWs propagating in-plane, three canonical configurations
(geometries) can be distinguished (see Fig.2.2):

• Damon-Eshbach geometry (surface spin waves): k and H0 lies in-plane (θ = 0◦) and
they are perpendicular to each other (φ = 90◦),

• Backward volume geometry (volume backward spin waves): k and H0 lies in-plane
(θ = 0◦) and they are parallel to each other (φ = 0◦),

• Forward volume geometry (volume forward spin waves): H0 lies out-of-plane
(θ = 90◦).

The Demon-Eshbach configuration is also called surface spin waves configuration because
the amplitude of the SW across the thickness is non-uniform, is located at one interface and
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Fig. 2.2 Dispersion relations of spin waves as a function of in-plane wavevectors calculated
from analytical formula (2.32) (a) the considered film is made from Py and has a thickness
of 50 nm, external magnetic field µ0H0 = 0.2T is applied along the z axis. Line along ky, for
kz = 0 is dispersion relation for Demon-Eshbach configuration, while line along kz, for ky = 0
for backward-volume. (b) the considered film is made from Py and has a thickness 1 nm,
external magnetic field µ0H0 = 0.2T is applied along the z axis. The plot presents the same
magnetic configurations, however now, the minimum for backward-volume configuration is
not pronounced due to the dominance of the exchange field. (c) To 50 nm Py film external
magnetic field µ0H0 = 1.5T is applied along the normal to the film. The dispersion relation
is characterized by isotropic isocontours. (Reproduced from J. Phys.: Condens. Matter 26,
123202 (2014) [62], © 2014 IOP Publishing Ltd.)

decays towards the second one[22]. The dispersion relation of Demon-Eshbach is presented
in Fig. 1(a), where one needs to make a cross-section along the ky-axis at position kz = 0.
Dispersion relation there is calculated for Py film of 50 nm thickness and for magnetic field
µ0H0 = 0.2T applied along the z axis. The backward volume configuration is characterized
by a minimum dispersion relation function for k ̸= 0. This lead to backward propagation for
some range of k with a negative slope, where group velocity is negative (see cross section
along kz axis, for kx = 0). Different behavior of SW in both of the configurations shows
strong shape anisotropy of the magnonic system, which is a consequence of the dipolar field.
Due to the scaling dipolar field with kd, changing the thickness can dramatically modify
the properties of the system. This is visualized in Fig. 2.2(b), where dispersion relation is
calculated for Py film of thickness 1 nm and applied magnetic field µ0H0 = 0.02T . The
function resembles parabolic dependence, which means the dominance of the exchange field
in the equation (2.32). In the case of forward volume configuration, presented in Fig. 2.2(c)
dispersion relation is isotropic. The magnetic field is applied perpendicular to the interface,
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so a static demagnetizing field exists in the system in the form of magnetic charges on the
surfaces. One needs to apply an external magnetic field that can overcome them, and thus
saturate film in the desired direction. Naturally, it is difficult to set the static component
of magnetization out-of-plane and this fact is reflected in the name: hard axis, meaning
that this configuration is not favorable for minimizing the energy of the system. In-plane
configuration for the film is thus called easy plane configuration.

2.3.2 Magnonic waveguides

The confinement in the second dimension leads to forming a waveguide – the structure that
is finite in two directions (thickness and width) but unconstrained in a third one. Shaping
the waveguide not necessarily means the physical constraints of the magnetic medium. The
magnonic waveguide[42] can be induced in the film, by shaping the internal the magnetic
film, for example by: modifying the magnetic anisotropy[128], placing another magnetic
structure on top of the film[93], pattering the structure[90] or designing the magnetic texture
in the form of domain walls[58].

The finite sizes lead to the quantization of the wavevector. As an illustration, let’s discuss
the case of a flat waveguide. For simplicity, we will consider only the system with the
exchange interactions – see Fig. 2.3. The wavelengths related to the quantization across the
thickness of the waveguide d are small and this quantization is relevant only for SWs of very
high frequencies[43]. Therefore, we can consider the modes which are homogeneous across
the thickness and quantized in the width of the waveguide w ≫ d with discrete components
of the wavevector: kn = π(n−1)

w , where n = 1,2,3, . . .. Only the wavevector’s component
along the waveguide k can change continuously. So, we can plot dispersion relation ω(k) for
this component, assuming specific quantization in the width, i.e for n = 1,2,3, . . ..

In narrow waveguide, the separation between the sucessive branches: δω = ω (k+ kn)−
ω (k+ kn−1) is meaningful, and the range of frequency accessible only for fundamental
mode (n = 1) is large – see the range 6-10.5 GHz in Fig. 2.3(a) vs. 6-7 GHz Fig. 2.3(b). A
narrower waveguide is easier to operate in a regime called single-mode, where the scattering
between perpendicularly quantized modes are excluded in the wide frequency range. The
coherence of SWs is preserved, even if the waveguide is curved. With increasing width, the
quantized modes appear at a lower frequency and the single-mode regime becomes narrower.
Considering the fact that around k = 0 group velocity of exchange-dominated SW is close
to zero, such a single-mode waveguide is practically inoperable – one needs to increase the
frequency, and then higher quantized modes come into play, i.e., the waveguide becomes
multi-mode.
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Fig. 2.3 Dispersion relations of waveguides with only exchange interaction taken into
account. The calculation was done for two different widths: (a) 100 nm, and (b) 500 nm. The
rest of the parameters, thickness: 20 nm, external magnetic field: µ0H0 = 0.2 T, were the
same for (a) and (b). The waveguides were assumed to be made of Py (MS,Py = 860 kA/m,
λex,Py = 5.29 nm).

It should be pointed out, that any potential magnonic circuit[57] would require changing
the direction of SW propagation since it is not possible to imagine any device that can
be designed along one line. Thus, the single-mode waveguides are intensively exploited
in research since they do not disturb the coherence of signal, and they can be used in
the application that relay wave computing[85]. Nevertheless, multimode-waveguide are
characterized by higher bandwidth, since they are not limited in frequency. The work P2
contributes to the field of multimode-waveguide by presenting the method of guiding the SW
through the bent in the multimode waveguide.

By including the dipolar interaction, the SW dispersion relation is much more complex,
even for the fundamental mode (n = 0). One needs to consider the fact, that even for
fundamental mode, the amplitude of SW is no more uniform across the width. The analytical
formula for the thin waveguide (where aspect ratio p = d/w is small, and the width is bigger
than λex) was derived by Guslienko[39, 41]. He found that the spin wave dynamics are
partially pinned (i.e., spin wave amplitude is reduced) at the lateral edges of the stripes
and the fundamental mode is not uniform anymore. The effect is caused by a dynamic
demagnetizing field produced by elliptically precessing magnetization in confined geometries
(mostly due to the presence of dynamic magnetic surface charges at lateral edges)[18]. To
describe SW pinning, he introduced the parameter weff, standing for the effective width of
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the waveguide, which is always smaller than the geometrical w. The parameter weff is the
fictitious width at which the sin-like/cos-like SW profile is completely pinned (m = 0), if
the profile would be extended outside the width w of the real waveguide. In general case,
the SW is partially pinned at the edges of the waveguide, and the limits weff = ∞ (weff = w)
correspond to the totally free ∂nm = 0 (completely pinned m = 0) SW, where ∂n denotes the
spatial derivative in the direction normal to the lateral edges.

The effective width weff is related to dipolar pinning parameter Ddip = ∂nm/m. The
parameter Ddip is expressed by aspect ratio p and for flat stripes (p ≪ 1) takes the value:

Ddip =
2π

p [1+2ln(1/p)]
,

In the range p ≪ 1, the relation between weff and Ddip can be expressed as:

weff = w
(

Ddip

Ddip −2

)
.

Recently, with the progress of experimental techniques that allowed the fabrication of
nanoscopic magnonic structure, there was a need to derive a theory that could describe SWs’
dispersion relation in waveguide at any aspect ratio, not only for p ≪ 1. The theory, as well
as comparison with experimental results was presented in the paper[127], where the authors
discussed truly nanoscopic waveguide, showing the exchange dispersion relation.

2.3.3 Magnonic crystals

The idea of periodic modulation of the material is very old and was possibly considered for
the first time by Lord Rayleigh in 1887 for one-dimensional photonic crystals in the form
of multi-layered dielectric film[81]. He could demonstrate that such a system possesses
band gaps: regions of frequency that completely halt transmission through the system.
After several decades, the theory of propagating electronic waves in crystal lattices was
developed[14], and it become a fundamental theory for any wave propagation in periodic
potential[61, 60, 5]. (The sketch of the derivation of the Bloch theorem is presented in the
Subsection below.)

In terms of magnetic material, the topic is also not new. The pioneering paper discussing
the periodization can be dated around 50 years ago[113], where the spin wave transmission
through the film of yttrium-iron-garnet with the array of grooves at the top surface was
investigated. The revolution in the investigation of the periodic systems, however, can be
pointed out in the paper of Yablonovitch[132] who considered periodic structures that could
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shape the propagation of light. This paper opened many frontiers in physics and in September
2022 is cited over 10000 times. Photonic crystals[53] brought many ideas that eventually
were applied to many other wave-like excitations in media, among them also to the spin
waves and the concept of magnonic crystal was renewed at the end of XX century[62]. Over
the course of a few decades, different approaches for the fabrication of magnonic crystals
were used: arranging nanoelements (strips[75, 74], dots[133, 34]), pattering the films in the
form of antidot lattices[119, 115], changing the magnetic properties (by material deposition
or ion implantation[128]), or modifying the boundary conditions[13].

New levels of complexity concerning the magnonic crystals are explored, e.g., 3D
structures[63, 37], and periodic textures[7]. In the dissertation are presented 3 works con-
tributing to the field of magnonic crystals: P1, P3, and P4. The details of dispersion relation
are presented in Chapter 3, where numerical tools are presented. Especially Sec. 3.1 because
it contains the implementation of the plane wave expansion method for spin waves[123, 65].
There are also presented exemplary results of the dispersion relation.

Bloch theorem

The Floquet theorem[30], known in condensed matter physics as a Bloch theorem[14], states
that the solution of the homogeneous linear differential equation with periodic coefficients
has the following form:

ϕ(r) = eik·ru(r), (2.35)

where the function u(r) is periodic with the same periodicity as the coefficients of the
differential equation. The parameter k is interpreted in condensed matter physics as a wave
vector and the function ϕ(r), called the Bloch function, is a wave-like eigenmode propagating
in a periodic medium. The properties of the inhomogeneous medium (e.g. saturation
magnetization MS, exchange stiffens constant A) are described by periodic coefficients of the
differential equation. The Bloch function can be understand as plane wave eik·r modulated
by periodic factor u(r+a) = u(r) with the periodicity of the medium.

It can be proved that the Bloch function is strictly periodic in the space of the parameter
k, i.e., in the space of the wave number or so-called reciprocal space:

ϕk(r) = ϕk+G(r), (2.36)

where G is the reciprocal lattice vector. The same periodicity shows the eigenvalues (energies
or frequencies) corresponding to the Bloch functions:

ω(k) = ω(k+G). (2.37)
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which is equivalent to the folding of the dispersion ration ω(k) into the confined region of
reciprocal space called the first Brillouin zone. Another important remark that should be
emphasized is that Bloch function ϕk,n (r) should be labeled by index n, because for given kkk
there are infinite and countable amount branches of dispersion relation folded into the first
Brillouin zone.

2.3.4 Magnonic quasicrystals

Quasicrystals are a special class of structures exhibiting, similarly to crystals, long-range
order and thus deserving a separated section to discuss them. In 1992, The International
Union of Crystallography provided the definition of crystal which states that crystal is “any
solid having an essentially discrete diffraction diagram"[23]. This definition was modified to
fit quasicrystal into it, because they are characterized by long-range order (they have discrete
diffraction diagram), however, they lack translation symmetry. Before, the definition of
crystal was stricter: "a crystal is a substance in which the constituent atoms, molecules, or
ions are packed in a regularly ordered, repeating three-dimensional pattern", which assumes
that crystal is constructed by unit cell, possessing translation symmetry. The discovery
of quasicrystal by Schechtman in 1984[107], destroyed a long-standing paradigm, which
exclude from consideration other fold symmetries than 2-, 3-, 4-, and 6-. Scientist for ~100
years, overlooked the fact that it is possible to fill the space also with other fold symmetries
like 5 or 10, however more than one unit cells need to be used.

Quasicrystals[50] possess several very interesting properties, that make them the ob-
ject of study in photonics or magnonics. I will discuss them on the example of Fibonacci
quasicrystal[122, 99], that I studied in the work P4. The easiest way to understand how the
Fibonacci sequence can be created is to present one technique, called "cut&projection"[50].
From two-dimensional square lattice, that plays a role of hyperspace for Fibonacci quasicrys-
tal, a straight line is drawn at the slope τ to one the principal direction of the lattice (τ is an
irrational number, equal to golden ratio τ =

(
1+

√
5
)
/2). Then, the lattice points from the

stripe of the width a(τ +1)
√

τ +2, projected at the line give Fibonacci quasicrystal being
a sequence of long (L = aτ/

√
τ +2) and short (S = a/

√
τ +2), where a is a square lattice

constant. Due to a lack of translation symmetry, we cannot define "a unit cell" which can
be used in numerical calculations to represent the whole structure. It is then necessary to
consider approximates of the Fibonacci sequence containing the finite number of S and L
sections. Moreover, the quasicrystal composed of short S and L sections can be decorated by
two distinct sections A and B of the same length, differing e.g. in material properties. In the
inset of Fig. 2.4(a) is presented such approximate built from 21 elements. The structure there
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is composed of two kinds of strips that have the same size but differ in magnetic parameters
leading to inducing the contrast. The discussed sequence can be understood as a decorated
Fibonacci sequence, with strips made of sequences SLLS and SLS that share S section with
the ratio: (2− τ)/(2+ τ) .

The quasiperiodic structures are self-similar, which means that some fraction of the
structure reveals the same pattern as the whole structure. This feature is especially interesting
from the perspective of the dynamic properties of the system. Eigenmode that would be
associated with this pattern shall be degenerated due to the appearance of the same pattern
several times, aperiodically within the structure.

(a)

(b)

Fig. 2.4 Fourier transform corresponds to the diffraction of a pattern of (a) Fibonacci
sequence, and (b) periodic sequence presented in the insets. Calculations were done for the
systems composed of 21 elements in both cases. (a) The Fibonacci sequence has a complex
spectrum of peaks, while (b) the periodic sequence is related to the periodic arrangement of
isolated peaks in the spectrum (the finite width of the peaks, results from the finite size of the
structure).

Another important feature is a dense fractal spectrum (i.e., Fourier transform) of quasiperi-
odic structure, composed of Dirac-delta peaks, which can be interpreted as a diffraction
pattern of scattered waves. The approximated spectra for finite structures (i.e., containing 21
elements) are showed in Fig. 2.4, where Fig. 2.4(a) presents Fourier transform of Fibonacci
sequence, while Fig. 2.4(b) – the spectrum periodic structure, showed for reference. In
Fig. 2.4(a) we can notice several bunches of pronounced peaks, but in (b) we have only single
peaks (widened due to the finite size of the structures), shifted by successive reciprocal lattice
vectors Gn = n2π/a, where a is a lattice constant of the periodic structure. This feature of
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quasicrystal leads to the opening large number of frequency gaps in the spectrum, due to
the fact that Bragg condition for reflection is fulfilled for a dense set of wave vectors. The
consequence of the lack of translation symmetry is that the wavevector cannot be interpreted
as quasimomentum, and the eigenfrequencies are not periodic in reciprocal space. Therefore,
we used the integrated density of states: IDOS( f ) (IDOS is equal to the amount of solution
(eigenfrequencies) below given frequency) instead of dispersion relation f (k) to present the
frequency spectrum of quasicrystals. The plateaus in IDOS( f ) denote the frequency ranges
corresponding to the frequency gaps – see e.g. Fig.3 in the work P4.

2.4 Spin wave localization

This section is devoted to one important property of wave dynamics, namely localization. The
localization of SW can be the result of the evanescent solutions of the LLE (characterized by
complex wavevector) which appear in the regions where propagating SWs, i.e., the oscillatory
solutions (characterized by real wavevector) cannot exist for a given range of frequencies.
This exponential decay in space can be observed in the areas where the precession frequency
is below the minimum of dispersion relation: min( f (k)), determined for real values of the
wavevector – see e.g. Fig. 2.2, or in the frequency gaps (e.g. in the spectrum of magnonic
crystals or quasicrystals) – see works P3 and P4. The homogeneous systems or the systems
with long-range order, which are unconstrained in size, cannot support the localization of
this kind. It is due to the exponential (i.e., physically unlimited) growth of the wave’s
amplitude which accompanies the decay in opposite direction. The SW modes can be,
however, exponentially localized at defects introduced into these systems. The presence of
defects (which can also take the form of interfaces or surfaces[70, 97] – see also work P3) can
guarantee the exponential decay of SW when one moves away from the defect in opposite
directions. The confinement in constrained geometries and on magnetization textures[124, 7]
can be also understood as a kind of localization because the SW amplitude can be focused on
these objects at selected frequencies. Some modes can be also naturally localized in ordered
and infinite systems due to the different and more complex mechanisms, not mentioned above.
This is e.g., the case of the localized modes that can be observed in the quasicrystal – see
work P4.

This arbitrary taxonomy of SW localization is neither strict nor complete. The mixing of
mentioned types of localization is also possible. One can consider the SW localization at
the interface of two magnonic crystals composed of magnetic nanoelements (strips, dots)
in which the SWs can be internally localized, or the SWs localized in defected magnonic
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quasicrystals where the intrinsic localization in the structure of quasicrystal can be altered by
the presence of defects.

Below, I would like to discuss broader some of these localization types with an indication
that was under my investigation and is included in the dissertation.

Nonuniform of magnetic material

The SW dispersion relation depends on material parameters like magnetization saturation,
exchange length, or anisotropy energy density. The molding of material properties is an
important method in designing magnonic crystals. SW scattering on the periodic pattern
induces Bragg reflection and opens related frequency gaps. A similar strategy is also used
in photonics and phononics, however, there are peculiarities of this approach, specific to
magnonics. If the dipolar interactions are active, the minimum of dispersion relation (and
not only its slope d f/dk) is sensitive to the material parameters, and some modes can be
localized only in the material, where they oscillate spatially while decaying exponentially in
another part of the system[98]. It is because the frequency of the given mode is above (below)
the minimum frequency for oscillatory (evanescent) solutions in respective components. This
type of localization is discussed in the work P3.

By adjusting the geometry, we can affect the static effective field inside the magnetic
structure, mostly due to the demagnetizing field, which is strongly dependent on the shape of
the structure. The SWs’ dispersion and the profiles of SW modes are also dependent on the
static effective field. Its increase leads, at some point, to the transition from oscillatory to
evanescent profile. Therefore, both the distribution of material parameters and the landscape
of static effective field are important for the determination of the regions where the SW
of a given frequency has an oscillatory or evanescent profile. In planar structures, with
sharp interfaces and magnetic field perpendicular to them, this mechanism can lead to the
appearance of additional modes in the spectrum, called edge modes[115, 116]. The magnonic
crystals can be fabricated by the decoration of the uniform film by the periodic array of
magnetic nanoelements (dots, strips). The periodicity in this system is provided not only by
the array of magnetic nanoelements (i.e., by the periodic distribution of material parameters)
but also by the periodic profile internal field within the film produced by the array. This is
visualized in Fig. 2.5, where the out-of-plane component of the static demagnetizing field is
plotted. The considered system is built from the uniform yttrium-iron-garnet (YIG) film with
a thickness of 112 nm. On top of the YIG film, the Ni strip is placed, which is 112 nm thick
and 800 nm wide. The system is magnetically saturated by the out-of-plane applied external
field of the value 0.5 T. We can notice a significant change in the static demagnetizing field
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in the system. The internal field in the uniform YIG layer is lowered in the central region,
below the Ni strip.

Fig. 2.5 The distribution of static demagnetizing field (out-of-plane component) for the
structure composed of the uniform film made of yttrium-iron-garnet (YIG) and Ni strip,
placed on the top. The following material parameters were assumed: YIG layer (MS,YIG =
143 kA/m, λex,YIG = 14.5 nm), Ni strip (MS,Ni = 480 kA/m, λex,Ni = 7.7 nm). YIG layer
and Ni strip have the same thickness 112 nm. The width of the strip is 800 nm. An
external magnetic field of the value 0.5 T is applied along the vertical axis, saturating the
magnetization in the out-of-plane direction.

Critical localization in quasicrystals

Quasicrystals possess a rich spectrum of modes that reflects the complexity of their structure.
In the frequency spectrum of wave excitations in quasicrystals, there is a group of the modes
called critically localized modes[82, 49], that are occupying specific arrangements of the
constituent elements of quasicrystals. The critically localized modes exhibit self-similarity,
like the structure of the quasicrystal itself. Due to this, it is not straightforward to define their
localization measure, it cannot be described simply by the rate of exponential decay. Thus,
there is a need to derive other, global type of localization measure that reflects complex forms
for the modes in quasicrystals. This type of localization, considered for SW in Fibonacci
magnonic quasicrystal, is a subject of research in the work P4.

Localization in magnetic texture

Magnetic moments can form nontrivial texture when the system is not saturated by an
external magnetic field. The complex textures are the results of the interplay between
Dzyaloshinskii–Moriya interactions, magnetic anisotropy, and dipolar interactions[108]. The
magnetization dynamics on magnetic textures are also intensively studied, and the localization
properties of the SW modes exited on the complex curvilinear magnetic configurations
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were reported. For example, the domain walls were exploited to use them as very narrow
waveguides[33, 45], or they can form regular pattern making magnonic crystals[7]. In
magnetic dot, where vortex state can be induced, the existence of whispering gallery modes
was reported. Although the confinement at the vortex, the mode is propagating one, because
it is formed from the interference of the clockwise and counterclockwise SWs, differing in
wavelengths. Its amplitude is localized next to the edge of the vortex[103]. Very intensive
studies are done on skyrmions due to their unique properties and potential application[28].
They can form a periodic lattice. The chirality that is embedded in the texture of skyrmions
can lead to the appearance of topological edge states in their lattice[24].

Termination of the periodicity – interfaces and surfaces of magnonic crystals

Another reason that can lead to the localization of SW is the termination of crystal, that sup-
pose to be infinite to sustain the translational symmetry. Explanations of this behavior were
given for the electronic state in the 30’ties of XX century, by Tamm[117] and Schockley[109].
Nowadays, Shockley states refer to states induced directly on the termination, while Tamm
states appear in the system that additionally has defects in the unit cells located at the edges.
The mathematical construction of the mode is based on the matching boundary condition
between two evanescent solutions on both sides of the interface. In the case of electronic
states, one can assume that electronic wavefunction decay exponentially in the vacuum,
however, SWs cannot exist outside of the magnetic material, and proper boundary condition
must be implemented. This was discussed with detailed in the paper of Rychły[97]. In
work P3, I discussed the existence condition for magnonic interface states localized at the
junction of two different semi-infinite magnonic crystals. The paper presents how from the
bulk properties, i.e., symmetries of the eigenmodes, one can predict in which frequency gap
interface mode would appear. The mathematical description of bulk-edge correspondence of
SW in magnonic crystals is based on the work of Zak[137, 138].

Defects

The appearance of defects in the crystal also leads to the localized of the waves. The
mechanism is similar to that described for interface and surface modes. The defect mode
is constructed from two evanescent waves decaying exponentially in opposite directions.
Investigation of the defect modes is a long subject, also in magnonics, where many ways of
defecting the ordered magnonic nanostructures (magnonic crystals and quasicrystals) were
considered, e.g.: changing the geometry of constituent elements[87, 139, 32] or local reversal
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of magnetization[11]. I contributed to this investigation with the work P4, where defected
magnonic Fibonacci sequence is investigated.

A special type of localization, that is the result of the disorder, is Anderson localization.
It was suggested for the first time by Philip Anderson[3, 2], who investigated electron
wavefunction in the crystal with the disorder introduced in lattice potential. He showed that
when the strength of disorder exceeds some threshold, then electronic transport completely
halts, and the wavefunction of electrons becomes localized with the exponential rate of decay.
This is a wave phenomenon and is the consequence of interference of the wave function
due to the wave’s scattering on different paths. This could not be explained by the ballistic
approach when one would expect a gradual degradation of the transmission. Due to the
wave nature of this phenomenon, it was observed also in other types of excitation, like
electromagnetic waves[104, 71] or acoustic waves[47].

Particularly interesting was a demonstration of Anderson localization of light. The
considered system was in the so-called transverse localization scheme[106, 84]. The light in
the form of localized modes is propagating along the waveguides that are forming photonic
crystals. Position along the waveguides plays the role of time in the original problem
formulated by Anderson. Waveguides are coupled to each other and the distance between
pairs of waveguides is proportional to coupling strength. Introducing disorder in the lattice,
i.e., when distances are different, the coupling is different as well. The system can be solved
by the Maxwell equation in paraxial approximation. This formulation of the problem is
analogous to the original one, which was described by Schrödinger equation and can be
even solved by the same techniques, for example, the tight-binding model. The Anderson
localization in the transverse scheme is localized wave spatially. The signal is concentrated
and decays exponentially.

This kind of localization is the subject of my recent studies conducted during my in-
ternship at the Swiss Federal Institute of Technology – EPFL in Lausanne, realized in the
framework of the NCN program ETIUDA (grant No 2020/36/T/ST3/00542). The research
is being done with the experimental team from EPFL: Prof. Dirk Grudler, Andrea Muc-
chietto, and Dr. Mingran Xu. In our studies, we want to exploit transverse localization in
one-dimensional magnonic crystals with the induced disorder.



Chapter 3

Numerical tools

In this chapter, I present the description of two numerical methods that I used in my re-
search projects, namely the plane wave expansion method (PWEM) and the micromagnetic
simulations (MS).

The PWEM is used in works P1, P3, and P4. The first implementation of PWEM for
3D magnonic crystals, in exchange dominated regime, was done by Maciej Krawczyk and
Henryk Puszkarski[65]. The method was then extended for planar magnonic crystals with
dipolar interactions taken into account[110] and used widely in the Department of Physics
of Nanostructures in different variants and for different applications[114, 70, 64, 35, 86]. I
developed the current version of the code of PWEM for magnonic systems. The software,
written in Python, is publicly available and distributed under the MIT license.

For the MS[76], I used software called MuMax3 that was developed by the Dynamat
group from Ghent University in Belgium with the leading role of Arne Vansteenkiste[121].
The software is distributed with an open source license GNU General Public License. Micro-
magnetic simulations were used in P2 work.

3.1 Plane wave expansion method

The PWEM is typically used for periodic structures, where the Bloch boundary condition
might be applied. To illustrate the principles of PWEM, I decided to present the derivation
of this method for one-dimensional magnonic crystal, where an external magnetic field is
applied along the strips, and both the exchange and dipolar interactions are included.

The starting point is LLE (2.3):

∂M
∂ t

=−µ0 |γ|M×Heff, (3.1)
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where γ stands for gyromagnetic ratio, and µ0 magnetic permeability. The PWEM is
dedicated to linear systems. Therefore, we need to linearize LLE and write the magnetization
vector in the form:

M(r, t) = [mx (r, t) ,Ms (r) ,mz (r, t)] , (3.2)

where x,z components point towards excitation directions, while the external magnetic field
lies along the y axis. For linearized LLE, the solutions are monochromatic waves and
dynamical components of the magnetization vector can be written as:





mx (r, t) = mx (r)eiωt ,

mz (r, t) = mz (r)eiωt .
(3.3)

In the further derivations, we skip explicit notation on the spatial dependence, i.e.,
mx ≡ mx (r) and mz ≡ mz (r). The left side of (3.1) is the derivative of time from the
magnetization vector, that can be now calculated:

∂M
∂ t

= iω [mx,0,mz]eiωt . (3.4)

The effective field is assumed to have sources in three kinds of fields, namely external
magnetic field, dipolar field, and exchange field:

Heff (r, t) = H0 +Hd (r, t)+Hex (r, t) . (3.5)

The external magnetic field H0 is static and uniform in the space, thus explicit dependence
on position and time can be neglected. Dipolar interaction are incorporated into the model
as a demagnetizing field, both static Hd (r), and dynamic one hd (r, t). In the framework of
linear approximation, the dynamic component of the demagnetizing field is also considered
to be harmonic in time, similarly to the dynamic component of the magnetization vector:
hd (r, t) = hd (r)eiωt . Effective field can be now presented in the form:

Heff (r, t) =
[
Hd,x +hd,xeiωt +∇λ 2

ex∇
(
mxeiωt) ,Hd,y +hd,yeiωt +∇λ 2

ex∇
(
myeiωt)+H0,

Hd,z +hd,zeiωt +∇λ 2
ex∇
(
mzeiωt)] . (3.6)
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Having defined all of the components of the effective field, we can write right side of the
equation (3.1):





(M×Heff)x = MS
(
Hd,z +hd,zeiωt +∇λ 2

ex∇
(
mzeiωt))+

−mzeiωt (Hd,y +∇λ 2
ex∇MS +H0

)
,

(M×Heff)y = 0,

(M×Heff)x = mxeiωtHd,y +mxeiωt∇λ 2
ex∇MS +mxeiωtH0+

−MShd,xeiωt −MS∇λ 2
ex∇
(
mxeiωt) .

(3.7)

Since the external magnetic is oriented along the strips, all the interfaces are parallel to the
H0, and the static demagnetizing field can be neglected. Having the left and right sides of the
LLE written down, we can now define the coupled equations of dynamical components in
the following form:





iΩmx =
MShd,z

H0
+ MS

H0
∇λ 2

ex∇mz − mz
H0

∇λ 2
ex∇MS −mz,

iΩmz =−MShd,x
H0

− MS
H0

MS∇λ 2
ex∇mx +

mx
H0

∇λ 2
ex∇MS +mx,

(3.8)

where Ω = ω
µ0H0|γ| .

In PWEM differential equation is solved in reciprocal space, which means that to both
Bloch function (dynamic components of magnetization) and material parameters (magne-
tization saturation and exchange length) the Fourier transform is applied. In the next step,
components Ms, mz, mx, hd,x, hd,z are expanded into Fourier series with reciprocal vector be-
ing in this case one dimensional: Gn =

[2πn
a ,0,0

]
. After expansion, the dynamic components:

mβ (β = {x,z}) of magnetization vector take following form:

mβ = ∑
G

mk (G)ei(k+G)·r, (3.9)

where k is a wavevector of SW. mk is a vector of Fourier coefficients, and ei(k+G)·r plane
wave.

We need also expand material parameters Ms and λex in the Fourier series:

MS = ∑
G

MS (G)eiG·r, (3.10)

lex = ∑
G

lex (G)eiG·r. (3.11)
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The dynamic component of demagnetizing field along the x (in-plane direction) axis has a
form[54]:

hd,x = h(x)d,x +h(y)d,x +h(z)d,x =− ∑
G̸=0

mx (G)

|G+k|2
(Gx + kx)

2 ×

×
(

1− cosh [(G+k)z]
sinh [(G+k)a]+ cosh [(G+k)a]

)
MS

+ ∑
G̸=0

sinh [(G+k)z]
sinh [(G+k)a]+ cosh [(G+k)a]

mz (G)

|G+k| × (3.12)

ei(G+k)·r (Gx + kx) ,

while along z axis (out-of-plane direction):

hd,z = h(x)d,z +h(y)d,z +h(z)d,z =

= −∑
G

mz (G)
cosh [(G+k)z]

sinh [(G+k)a]+ cosh [(G+k)a]
ei(G+k)·r + (3.13)

+ ∑
G ̸=0

mx (G)
sinh [(G+k)z]

sinh [(G+k)a]+ cosh [(G+k)a]
(G+k)
|G+k| ei(G+k)·r.

Having expanded components into the Fourier series, now we can attempt to derive
expressions from (3.8), that are products of the Fourier series. We present the derivation
for 1

H0
MS∇λ 2

ex∇mα , where α = {x,z} The expression contain three Fourier series, that need
to be multiplied. We use here properties that sum of two reciprocal vectors give another
reciprocal vector:

1
H0

MS∇λ 2
ex∇mα =

1
H0

∑
G

MS (G)eiG·r∇∑
G′

λ 2
ex
(
G′)eiG′·r∇∑

G′′
mα
(
G′′)ei(G′′+k)·r =

=
1

H0
∑
G

MS (G)eiG·r∇ ∑
G′,G′′

λ 2
ex
(
G′)eiG′·r (G′′+k

)
mα
(
G′′)ei(G′′+k)·r =

|G′′′→G′′+G′|

=
1

H0
∑
G

MS (G)eiG·r ∑
G′′′,G′′

λ 2
ex
(
G′′′−G′′)×

×ei(G′′′+k)·r (G′′+k
)
·
(
G′′′+k

)
mα
(
G′′) =∣∣∣G′→G′′′+G

G′′→G′−G,G′′→G

∣∣∣
(3.14)

=
1

H0
∑

G′′,G′,G
MS
(
G′−G′′)λ 2

ex
(
G′′−G

)
×

×mα (G)ei(G′+k)·r (G+k) ·
(
G′′+k

)
.
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Following the decoration of Eq.(3.8), we can write:

1
H0

mα∇λ 2
ex∇MS =

1
H0

∑
G′′,G′,G

MS
(
G′−G′′)λ 2

ex
(
G′′−G

)
×

×mα (G)ei(G′+k)·r (G′−G′′) ·
(
G′−G

)
. (3.15)

The dynamic components of demagnetizing field and magnetization saturation are expanded
into Fourier series, so now their product in the equation (3.8) can be defined:

MShd,z

H0
= − 1

H0
∑

G,G′
mz (G)eiG·r cosh [(G+k)z]

sinh [(G+k)a]+ cosh [(G+k)a]
MS
(
G′)eiG′·r +

− 1
H0

∑
G,G′

mx (G)eiG·r sinh [(G+k)z]
sinh [(G+k)a]+ cosh [(G+k)a]

×

×MS
(
G′)eiG′·r (Gx + kx)

|G+k| (3.16)

=− 1
H0

∑
G,G′

MS
(
G′−G

)
ei(G′+k)·r ×

×
[

mz (G)C (G+k)+mx (G)S (G+k)
(Gx + kx)

|G+k|

]
,

while the product of magnetization saturation and x component of the dynamic demagnetizing
field takes the following form:

MShd,x

H0
= − 1

H0
∑

G,G′
MS
(
G′−G

)
ei(G′+k)·r × (3.17)

×
[

mx (G)

|G+k|2
(Gx + kx)

2 (1−C (G+k))+
mz (G)

|G+k| (Gx + kx)S (G+k)

]
.

The auxiliary functions were used in (3.17) and (3.18):

C (kkk,x) = cosh(|kkk|x)e−|q|d/2, S (kkk,x) = sinh(|kkk|x)e−|q|d/2 (3.18)
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The procedure of Fourier expansion is finished and two coupled linear equations that
were defined in (3.8) have the following form:

iΩmx
(
G′) = − 1

H0
∑
G

MS
(
G′−G

)
×

×
[

mz (G)C (G+k)+mx (G)S (G+k)
(Gx + kx)

|G+k|

]
+

+
1

H0
∑

G′′,G
MS
(
G′−G′′)λ 2

ex
(
G′′−G

)
mz (G)× (3.19)

×
[
(G+k) ·

(
G′′+k

)
−
(
G′−G′′) ·

(
G′−G

)]
+

−mz
(
G′−G

)
.

iΩmz
(
G′) =

1
H0

∑
G

MS
(
G′−G

)
×

×
[

mx (G)

|G+k|2
(Gx + kx)

2 (1−C (G+k))+
mz (G)

|G+k| (Gx + kx)S (G+k)

]
+

+
1

H0
∑

G′′,G
MS
(
G′−G′′)λ 2

ex
(
G′′−G

)
mx (G)× (3.20)

×
[
(G+k) ·

(
G′′+k

)
−
(
G′−G′′) ·

(
G′−G

)]
+mx.

In the next step, LLE is presented in the form of an eigenproblem, where Ω is sought
frequency of modes, and M̂ is eigen matrix with eigenvectors:

iΩmk = M̂mk, (3.21)

The eigenvector contains Fourier coefficients for both (x and z) components of magnetization.
Thus, the eigenproblem is twice as big as the number of reciprocal vectors G:

mT
k =

[
mx,k (G1) , . . . ,mx,k (GN) ,my,k (G1) , . . . ,my,k (GN)

]
. (3.22)

Please note the index k next to vector m. Wavevector now is a parameter, that is given
externally for numerical calculations. The matrix M̂ has a form:

M̂ =

(
M̂xx M̂xy

M̂yx M̂yy

)
, (3.23)
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and is constructed from Eq. (3.19) and (3.20). Matrix elements are defined as:

Mxx
i j =− 1

H0
MS
(
Gi −G j

)
S
(
G j +k

) (Gx j + kx
)

∣∣G j +k
∣∣ , (3.24)

Mzz
i j =

1
H0

MS
(
Gi −G j

) (Gx j + kx
)2

∣∣G j +k
∣∣2
(
1−C

(
G j +k

))
, (3.25)

Mxz
i j = − 1

H0
MS
(
Gi −G j

)
C
(
G j +k

)
−δi j

+
1

H0
∑
Gl

MS (Gi −Gl)λ 2
ex
(
Gl −G j

)
× (3.26)

×
[(

G j +k
)
· (Gl +k)− (Gi −Gl) ·

(
Gi −G j

)]
,

Mzx
i j =

1
H0

MS
(
Gi −G j

) (Gx j + kx
)2

∣∣G j +k
∣∣2 ×

×
(
1−C

(
G j +k

))
+δi j +

− 1
H0

∑
Gl

MS (Gi −Gl)λ 2
ex
(
Gl −G j

)
× (3.27)

×
[(

G j +k
)
· (Gl +k)− (Gi −Gl) ·

(
Gi −G j

)]
.

At this stage, analytical work is done, and one needs to implement a problem in a specific
programming language. The numerical part contains the definition of matrix, diagonalization,
and postprocessing of the data. For this purpose, I used Python3 programming language1.
This software is very efficient in doing research due to well-established libraries for numerical
calculus and data visualization. PWEM requires rather basic matrix operations like multipli-
cation, addition, and diagonalization, however computational time scales up parabolically
with the amount of reciprocal vector, so there is a need for high optimization of code. The
library NumPy, which I used heavily for this task, relies on the BLAS (Basic Linear Algebra
Subprograms) which is a set of low-level routines greatly optimized for speed. Thus the code
provides the reasonably fast implementation of PWEM that could effectively solve problems
with dozens of thousands of reciprocal vectors.

1https://github.com/szymag/ZFN
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The numerical studies encompasses also: data analysis and visualization. I implemented
the codes in Python3 for postprocessing the outcomes of PWEM and included them in
the package with the code of PWEM. There are two main outcomes of the PWEM: eigen-
frequency and corresponding profiles of eigenmodes. This information can be presented
visually as the plot of dispersion relation or IDOS (both are dependencies on frequency)
and the plots of the spatial profiles of SWs (for selected frequencies). The profiles can
be then processed further to obtain e.g., the spin wave–elastic wave cross section (work
P1), logarithmic derivative (work P3), and localization measure (work P4). The codes for
the calculation of these characteristics were also developed. Figure 3.1 present exemplary
dispersion relation and SW modes obtained by PWEM.
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Fig. 3.1 (a) The dispersion relation obtained with plane wave expansion method for exchange
spin waves in 1D magnonic crystal composed of two alternative repeating layers of thickness
20 nm and unit cell 100 nm. made of different materials: Co (60 nm width) and Py (40 nm
width). (b) and (c) presents exemplary profiles of modes – the absolute value of dynamic
comment of magnetization was plotted. Wavevector and frequency for which modes were
obtained are marked on dispersion relation by blue dots.

Supercell approach

The PWEM can be used to calculate the spectrum of the system, that do have translational
symmetry. The method still requires periodicity, however, the difference is in the definition of
the unit cell. In this approach, we rather define a full system as a one unit cell, and periodicity
is artificially assumed[69, 100]. In this manner, so-called the supercell approach was used



3.2 Micromagnetic simulations 39

in work P3, where two semi-infinite one-dimensional crystals were defined within one unit
cell, and in work P4, where the unit cell contained the finite approximate of the Fibonacci
quasicrystal.

3.2 Micromagnetic simulations

The finite-difference method (FDM) and finite-elements methods (FEM) are the numerical
techniques that are commonly used for solving differential equations[78], regardless of
the geometry of the considered system. The implementation of these methods in the LLE
creates a wide class of tools under the common name micromagnetic simulations (MS)[76].
Generally, they take the assumption of micromagnetism[16], where the system is treated as
a continuum medium (i.e., the atomistic structure of the magnetic material is represented
only by effective field, and the length scale is small enough to investigate nano- and micro-
scaled effects), and then the LLE is solved on the discrete mesh. In my research, I used
MuMax3[121] software that is based on FDM. Below, I shortly describe the assumptions
and workflow that I develop to work with this software.

The first task in the computational scheme is to define the geometry of the considered
system, which is then discretized. Since MumMx3 is FDM, the only way the system can
be discretized is into cuboids with a regular grid. The field quantities (i.e., magnetization,
effective fields) are discretized and integrated over the volume of the cuboid, while spatial
derivatives are approximated by finite differences. This approach has two main drawbacks: it
poorly convey the curved shapes, and since all elements have equal volume computational
resources are used on the area that is not of particular interests. Fig. 3.2(a) presents an
exemplary cuboid mesh of the sphere, with clearly visible stairs, where a curved edge
should be expected. One can overcome this issue with finer cuboids, however, this approach
is of course computationally costly. On the contrary, FEM can better represent complex
geometries. Additionally, the mesh density can be adjusted on demand, i.e., in places where
higher accuracy is required. An exemplary mesh suitable for FEM is presented in Fig. 3.2(b).
It is visible, that edge of the sphere is well preserved. That freedom comes from the fact, that
quantities are approximated by a set of interpolation functions. In general, implementation
of the finite-element method is much more complex, and the software which provides this
method is typically stand-alone. The specific physical problem can be then implemented. In
such way community implemented Landau-Lifshitz equation for example in COMSOL[120]
and FEniCSx[105]. In my research, I dealt with thin films and waveguides, which are
perfectly suitable for MumMax3 software.
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Definition of system properties in micromagnetic simulation

Fig. 3.2 Mesh of the sphere. (a) presents mesh defined for finite difference method, where
cell are cuboids and thus they badly represents the curvature of the body. (b) shows mesh
constructed from tetrahedrons that can model the original shape. This mesh is suitable for
the finite element method. Figure reprinted by permission from Springer Nature from Ref.
[4], © 2015 Springer Nature Ltd..

The size of the mesh should fulfill several conditions. Firstly, it should be small enough
to describe properly the dependence of magnetization in space, i.e., the direction of the
magnetization vector should vary smoothly in space. The angle should be smaller than
0.4 rad. If one wants to investigate exchange spin waves, then cell size needs to be around the
value of exchange length, which for typical magnetic material it varies from a few to dozen
of nm. For larger waves, where dipolar interactions are dominant, cell size can be bigger than
the value of exchange length, however, one should discretize in a way, to properly represent
non-uniformity in the magnetization in the magnetic body. There are no typical values, that
one can propose, and the proper grid size is selected by trial and error. Sometimes, assuming
a cell too big is done on purpose, because it simplifies investigation since it will average
variation of magnetization. For example, a common technique is to assume one cell through
the thickness of a thin film. In this way, we neglect perpendicular standing spin waves.

In the next step, it is necessary to define on the already created grid, the magnetic body.
It is called in MuMax3 geometry. There are several built-in functions like plane, ellipse, and
ellipsoid. They can be modified later with a geometrical operation like intersection, addition,
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etc. Magnetic properties are defined via a so-called region, where user define magnetic
parameters like magnetization saturation, exchange length, and magnetization damping.

To investigate SW dynamics, one needs to achieve a stable magnetic configuration. This
is a necessary condition for SW investigation because otherwise, all three components vary
in time, and the assumption of precession with a small angle around equilibrium cannot
be used. The MuMax3 has implemented a method to find the minima of the magnetic
system by minimizing free energy. It is done with the steepest descent algorithm. There are
many approaches for SW excitation, and any time-depended torque leads to SW excitation.
It is worth mentioning, that in the real magnetic structures in room temperatures SW are
present all time, they are excited thermally, and can be detected by ultra-sensitive tools,
like Brillouin light scattering spectroscopy[118]. In a linear regime, the frequency of the
source corresponds to the frequency of SW. Depending on the need, one can reproduce the
experimental source into mumax3, by shaping effective field h(r, t). The most often used
antenna design is coplanar waveguide[92], where microwave current flows in the central
line, and is surrounded from both sides by ground lines. Knowing the analytical formula or
numerical data for the spatial distribution of the magnetic field emitted by the antenna, the
profile can be introduced into the simulations. This is done when one is interested specifically
in the SW modes that are excited in the experiment, and the reproduction of the efficiency
of SW excitation is crucial in the research. Otherwise, one can use an easier approach and
define some arbitrary dynamic magnetic field. The simplest way is the excitation of harmonic
signal with frequency f :

h(r, t) = h0 (r)sin(2π f t) , (3.28)

where, h0(r) is the spatial amplitude of the signal, and can take the form of Heaviside step
function, non-zero on several unit cells. SW frequency is given, and system response with
wavenumber, thus the area of excitation, i.e., the width of fictitious antenna, should be smaller
than half of SW wavelength to efficiently excite SW. Particular attention should be also put
to the amplitude. The absolute value should be some fraction of the external field, to keep
the system in the linear regime, and keep the cone of precession small enough. The direction
of excitation needs to be applied perpendicularly to the direction of the external magnetic
field. This kind of excitation is used in the work P2, where a harmonic wave is propagating
in the magnonic waveguide. The objective is to observe SW spatial distribution.

Another common technique is broadband excitation, used e.g. for numerical calculations
of system’s dispersion relation. A wide range of frequencies and wavevectors needs to be
excited, which means that in real spaces, i.e., time and space one needs to define a magnetic
field by a function that after transformation to reciprocal spaces will have desired profile,
ideally uniform distribution in some range of frequencies. These properties are fulfilled by
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’sinc’ function:
h(r, t) = h0 (r)sinc(kx)sinc(2π fcut)(t − t0) , (3.29)

where fcut is a frequency until which SWs are excited, and t0 determines the shift of the
signal in time. The profile of the sinc function is presented in Fig. 3.3 as well as its Fourier
transform. Although the delay t0 does not affect the distribution of the signal itself, it shifts
the maximum of a function, and then all shape can be generated by the antenna. Otherwise,
if one keeps t0 = 0 only half of the signal will be generated and this can lead to artifacts in
the spectrum of SWs. The FFT in Fig. 3.3(b) presents distribution of excited frequencies.
fcut was assumed to be 7 GHz, and as it can be seen till this value distribution is uniform
almost across all ranges except the region of fcut = 7 GHz. The oscillation around fcut are
so-called Gibbs phenomenon and it is the effect of discontinuity of squared function at fcut.
Another important factor to which one needs to pay attention is sampling in time. To fully
reconstruct a continuous function by discrete sequence the sampling must be at least twice
the highest frequency, i.e., fcut.
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Fig. 3.3 (a) Profile of sinc function that can generate broadband spectrum of waves. The
curve is defined with fcut = 7 GHz and t0 = 5 ns. (b) The FFT spectrum of sinc function.
The jump at 7 GHz refer to fcut frequency.

Postprocessing

The results from the micromagnetic solver are given in the form of three component magneti-
zation vectors on the defined grid at the specific time frame. In other words, the software
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returns a snapshot of magnetization in time at a defined sampling rate. In the next step, the
task is to extract relevant information by means of numerical postprocessing of the data.

Raw data are obtained for real spaces, i.e., time and space. In these domains, one
can investigate for example spatial profile of SW, and interference. For example, after
reaching a steady state, integrating signals over time can provide information about the
spatial distribution of SW in the system[102]. It is also possible for example to investigate
SW characteristics like transmittance and phase shift that SW can get after propagating
through some defined barrier. This kind of analysis was performed in the P2. The next
technique to work with data provided by micromagnetic simulation is to transform them
into reciprocal spaces, time into frequency, and/or space into a wavevector. This is done
by applying a fast Fourier transform (FFT) to the data. Thanks to this, one can study the
dispersion relation of SW and profiles of excitations.





Chapter 4

Research

In this chapter, I present my results published in four peer-reviewed journals. All these
works are concentrated on the SW dynamics in magnonic structures, in particular, on the
role of localization and propagation in the system. Each paper is presented in a separate
section, named the same as the titles of the manuscript. For convenience, I will refer to these
publications by the labels: P1-P4. Papers are included in the dissertation in order of their
publication date:

• P1 - Driving magnetization dynamics in an on-demand magnonic crystal via the
magnetoelastic interactions

• P2 - Anomalous refraction of spin waves as a way to guide signals in curved magnonic
multimode waveguides

• P3 - Interface modes in planar one-dimensional magnonic crystals

• P4 - Spin-wave localization on phasonic defects in one-dimensional magnonic qua-
sicrystal

P1 paper was published with experimentalists from the Netherlands ("University of Gronin-
gen"), Germany ("University of Greifswald"), and France ("Le Mans University"). We
investigated the role of SW localization on magnetoelastic interaction. P2 treats the topic of
SW in magnonic waveguides that have bent. With the theoretical team from Ukraine ("Igor
Sikorsky Kyiv Polytechnic Institute" and "Institute of Magnetism of NAS of Ukraine"), We
proposed a concept based on a graded refractive index, that allows passing SW through bent
keeping the coherence of the signal. P3 concern the theoretical investigation of the interface
modes between two joint one-dimensional magnonic crystals. We derive their bulk-to-edge
correspondence for SW, which gives the condition for the existence of interface modes. In
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P4 we investigate the role of defects in the one-dimensional quasiperiodic magnonic crystal.
We discuss the evolution of the SW spectrum and mode localization under different levels of
disorder.

Each section contains a short introduction to the paper and describes my contribution.The
statements of other co-authors about their contributions are gathered in Appendix B. Publica-
tions are placed in the thesis with the publishers’ permission (American Physical Society,
Springer Nature).

4.1 P1 - Driving magnetization dynamics in an on-demand
magnonic crystal via the magnetoelastic interactions

The research presented in the paper P1 was done in collaboration with an experimental
group from "Zernike Insitute for Advanced Materials" at "the University of Groningen" in
the Netherlands. The experiment was conducted by C.L. Chang under the supervision of
R. I. Tobey. Support in conducting the experiment was given by a group from IMMM UMR
CNRS in Le Mans in France and the Institute of Physics at the University of Greifswald in
Germany.

The collaboration started from experimental measurements of magnetization dynamics in
a 40 nm thick film, for the various configurations of ferromagnetic layer and substrate (Ni or
Co0.2Fe0.6B0.2 deposited on MgO or glass). The experiment relies on the optical excitation
of elastic and magnetic dynamics by two interfering laser pulses shining onto the surface[52].
The goal was to suppress magnetization periodically in space, making the one-dimensional
magnonic crystal created on-demand. In the system were excited thermoelastically the
surface acoustic waves that could propagate along the magnetic film. Due to magnetoelastic
interactions[129, 26], the spin waves could also be excited. The spin wave excitation was
then probed by a normally incident probe pulse that can sample the temporal evolution
magneto-optical Faraday effect with femtosecond resolution. This experiment collects a
global, averaged signal of magnetization dynamics. The measurements were conducted for
various magnetic field values and in-plane angles.

The experiment showed the angular dependence between the direction of propagation
of the surface acoustic wave, being the direction of periodicity of magnonic crystal, and
magnetic field: the null signals at 0 and 90 degrees were recorded, as was expected for
magnetoelastic interactions of spin waves with Rayleigh surface acoustic wave. However,
for Ni deposited on MgO additional suppression in amplitude was found around 30 degrees
making two distinct lobes in this angular dependence. It was also reported that the shape of
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the resonance differs in the two angular regimes, i.e., low angle and high angle regimes. After
applying Fourier transformation to the time-resolved Faraday signals, data revealed that for
high angles, the peak is well represented by two Lorentzians, while for low angles peak can
be fitted with one Lorentzian. At the time of discovering these results that were at first glance
not expected, prof. Tobey visited Poznań and gave a seminar describing his experiments
and highlighting recent findings. At that moment, we did not have a tool that could solve
magnetoelastic interactions. Therefore, we decided to use the plane wave expansion method
and investigate the evolution of spin wave eigenmodes under magnetic field applied in-plane
at different angles, and qualitatively estimate the Faraday signal. About that time Rodolfo
Gallardo published, on arXiv, a paper [32] where he considered an in-plane magnetic field,
applied at the oblique direction with respect to wavevector. I implemented this feature to
the code of the plane wave expansion method and could calculate spin wave spectra in the
experimentally considered system. The implementation was verified by Mateusz Zelent,
who performed the micromagnetic simulations. We could observe that for low angles the
frequency separation of modes was low, while for higher angles fundamental mode was
distinctive from other quantized modes.

From the plane wave expansion method, we extracted the profile of spin wave modes.
Thanks to this, we could analyze the evolution of spin wave localization in the one-dimensional
magnonic crystal under angle variation. We introduced phenomenological formula describing
the magnetoelastic interaction that takes into account spatial profile and frequency separation.
We could qualitatively reproduce the measurements in the sense that two lobes were also
observed in the angular dependence of the Faraday signal.

In work P1, I performed numerical calculations of spin wave spectra with the plane wave
expansion method, analyzed data, wrote sections ‘the model’, and ‘numerical simulations’,
and contributed to the manuscript preparation.
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Using spatial light interference of ultrafast laser pulses, we generate a lateral modulation in the mag-
netization profile of an otherwise uniformly magnetized film, whose magnetic excitation spectrum is
monitored via the coherent and resonant interaction with elastic waves. We find an unusual dependence
of the magnetoelastic coupling as the externally applied magnetic field is angle- and field-tuned relative
to the wave vector of the magnetization modulation, which can be explained by the emergence of spa-
tially inhomogeneous spin-wave modes. In this regard, the spatial light interference methodology can be
seen as a user-configurable, temporally windowed, on-demand magnonic crystal, potentially of arbitrary
two-dimensional shape, which allows control and selectivity of the spatial distribution of spin waves.
Calculations of spin waves using a variety of methods, demonstrated here using the plane-wave method
and micromagnetic simulation, can identify the spatial distribution and associated energy scales of each
excitation, which opens the door to a number of excitation methodologies beyond our chosen elastic wave
excitation.

DOI: 10.1103/PhysRevApplied.10.064051

I. INTRODUCTION

The magnetic excitation spectrum of a thin (tens of
nanometers), uniformly magnetized film is well studied
and understood [1,2]. The fundamental spin-wave mode,
where the magnetization precesses in phase (i.e., with the
wave vector k = 0) in the entire volume of the system,
is called the Kittel mode and can be measured by exper-
imental techniques such as ferromagnetic resonance or
time-resolved magneto-optical Kerr (or Faraday) effects
[3]. One can also observe spin-wave (SW) confinement
(and quantization) along the film depth, whose energy
depends on film thickness and pinning effects at the sur-
faces. These modes, called perpendicular standing SW
modes (PSSW), are still laterally uniform in amplitude and
phase [3] for in-plane wave vector k = 0.

Going beyond lateral phase homogeneity brings about
the appearance of spin-wave modes of finite wave vec-
tor (k > 0). At low wave vectors, the spin-wave disper-
sion is highly anisotropic with respect to the direction of
an externally applied magnetic field due to dominating
dipolar interactions [4,5]. With increasing wave vector,

*r.i.tobey@rug.nl

exchange interactions become more important and the SW
modes are termed the isotropic exchange SW. Depending
on the particulars of the dispersion relation (determined
by magnetic field orientation and the relative strength of
dipolar-to-exchange interactions), the SW modes can have
positive, zero, or negative group velocity. The SW disper-
sion, in both dipolar and exchange regimes, can be found
by optical means using Brillouin spectroscopy [6], while
time-resolved magneto-optical imaging based on the Fara-
day effect can also be used to determine the dispersion of
SW [7]. This latter technique is limited to purely dipolar
SWs due to the spatial resolution limits associated with the
particular probing wavelength that is used.

Structuring the lateral magnetic landscape further mod-
ifies the SW spectrum, while opening opportunities for
spin-wave localization, control and manipulation. This is
the scientific discipline of magnonics, where artificially
engineered and spatially patterned magnetic materials such
as arrays of magnetic dots [8], holes in magnetic films
(antidots) [9,10], magnetic stripes [11–13], and bicompo-
nent arrays [14], as well as more complex spatial pat-
terns such as magnonic quasicrystals [15] or the inher-
ent domain structure of multilayers of high perpendicular
anisotropy [16], can be used to manipulate and localize

2331-7019/18/10(6)/064051(13) 064051-1 © 2018 American Physical Society
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SW dynamics. The periodic magnetization profile forms
a so-called “magnonic crystal.”

For magnonic crystals (MCs) operating in a dipolar
regime, the dispersion relation can be tuned by the change
of the direction of the external field with respect to the
periodically patterned structure [17,18]. This effect results
from the presence of static and dynamic (de)magnetizing
fields and is observed even for standing (k = 0) SW
modes. The additional feature of MCs is a band struc-
ture of SW dispersion that is manifested by the presence
of multiple modes for the same value of wave vector k
(when k is reduced into the first Brillouin zone). There-
fore, at k = 0, there exists a sequence of modes for which
the spatial distribution of the amplitude and phase within
an individual unit cell of MC is repeated periodically in the
whole structure.

Shining light onto the surface of a magnetic material
can modify the magnetization landscape due to heating,
thereby opening the possibility of using the spatial pattern-
ing of light to induce magnonic behavior. In most ultrafast
optical experiments on magnetic materials, a large-
aperture optical beam is used to excite the sample surface,
resulting in uniform suppression of the magnetization pro-
file, impulsively modifying the effective field landscape,
and generating the laterally homogeneous free precession
of a Kittel-like mode, as well as PSSW excitation [3].
Attempts to laterally shape the excitation pattern have
had success as evidenced in recent papers by Busse et al.
[19] and Vogel et al. [20] utilizing continuous and pulsed
laser sources, respectively. In the context of magnonics,
spatially patterned optical excitation offers user-defined,
reprogrammable arrangements of magnetic properties with
the potential for unparalleled control of spin-wave genera-
tion and propagation [21]. These latter two aspects directly
relate to the possibility of spin-wave signal processing
[22,23], combining two required elements, namely, a spa-
tially extended, or distributed, coherent source of SWs and
the possibility to manipulate their respective phases. Both
of these requirements can be fulfilled, in principle, by our
optical interference methodology.

In this paper, we provide a unique view of the effects
of a spatially periodic optical excitation of a uniform mag-
netic film, the emergence of a magnonic crystal, and finally
the elastic excitation of spatially distributed SW modes
[24,25]. We extend the interpretation and understanding
of our previous results [26–28] by detailing the preces-
sional response as a function of the angle of the applied
magnetic field relative to the MC wave vector. In doing
so, we augment our previous identification of elastically
driven ferromagnetic resonance to include localized spin-
wave modes that exist on the magnetically modulated
magnetization background. The periodic and inhomoge-
neous pattern of spin-wave eigenmodes also allows us to
change the magnetoelastic interaction. We show that this
nonuniformity alters the anisotropy of the magnetoelastic

coupling observed in homogeneous magnetic film [29,30].
This additional anisotropy of a magnetoelastic interaction
can be explained only if the spatial modulation in the SW
profiles is accounted for, in effect, an optically induced
magnonic crystal.

The present paper contains experimental and modeling
sections. In the first section, we perform the transient grat-
ing (TG) experiments on two materials, Ni and CoFeB
thin films (40-nm films on transparent substrates such as
glass or MgO), which show markedly different responses
as a function of the angle of the applied field for a fixed
acoustic wavelength of 1.1 μm. In the Ni films (low
Curie temperature, TC, low saturated magnetization, MS),
an unexpected and previously unwitnessed (binary) phase
shift of π is evident as the magnetic field angle is scanned
from zero to 90 degrees (relative to the TG wave vec-
tor); see Fig. 1. Accompanying this evolution in phase is
a strong suppression in precessional amplitude in the inter-
mediate region, indicative of interference between two (or
more) distinct modes of precession in two different angu-
lar regimes. This interpretation is supported by the second
set of measurements on Co0.2Fe0.6B0.2 (high TC, high MS),
which exhibit elastically driven precession in only one of
the previously determined angular regimes and, amazingly,
the near-complete suppression of precession in the second
angular regime.

We claim that these findings can be reconciled by con-
sidering the interaction of elastic waves with the under-
lying modulated magnetization landscape induced by the
spatially periodic heating. Using the plane-wave method
(PWM) [31,32], we calculate the SW eigenfrequencies

H

FIG. 1. We excite the ferromagnetic thin film with two interfer-
ing ultrashort pulses, which simultaneously generates the surface
propagating acoustic waves and laterally suppresses the magne-
tization profile to form the magnonic crystal. A magnetic field
H can be fully rotated around the sample normal and the angle
φH denotes its direction relative to the periodicity of a magnonic
crystal.

064051-2
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and corresponding spatial profiles, taking into account
the (de)magnetizing fields as a function of the angle
between the applied magnetic field and the direction of
modulation of magnetization (see Fig. 1). The calcula-
tions are performed for selected modulation depths of
the time-dependent magnetization landscape, which are
extracted from the two-temperature model (TTM) and two-
dimensional thermal diffusion considerations [28]. The
angular dependence of the eigenmode frequencies (at k =
0) is verified by micromagnetic simulations (MS) and
excellent agreement is achieved between the more rigorous
and semianalytical PWM and numerical micromagnetic
results.

II. EXPERIMENTAL RESULTS

We begin with a brief recapitulation of the key fea-
tures of our experimental approach. As shown in Fig. 1,
the experiment relies on the impulsive optical excitation
of elastic and magnetic dynamics at the surface of a thin
metallic ferromagnetic film by impinging two interfering
laser pulses onto its surface. In our experiments, we utilize
the second harmonic of the Ti:sapphire amplified laser as
the excitation source, whose primary action is to (1) impul-
sively suppress sample magnetization [33,34] in the form
of a spatially periodic pattern and (2) thermoelastically
excite acoustic waves that propagate along the surface of
the film/substrate heterostructure [35,36]. We have pre-
viously identified the acoustic waves as both Rayleigh
surface acoustic waves (SAW) and surface-skimming lon-
gitudinal waves (SSLW) [27]. The latter has also been
shown recently by Sander el al. [37]. The ensemble of
excitation processes is then probed by a normally incident
probe pulse and can include time-resolved diffraction of
probe light due to the spatial periodicity of strain and/or
surface deformation and/or polarization analysis of the
transmitted or specularly reflected probe light to extract
magnetization dynamics. For magnetization dynamics, we
also implement an electromagnet that can rotate around the
sample normal. Further experimental details can be found
in the work of Janusonis et al. [28].

The details of the magnetoelastic interaction depend on
the material and substrate combination. However, we can
make a few general statements. For a fixed grating peri-
odicity, the observed frequencies are solely determined
by the velocity of acoustic waves in the film/substrate
heterostructure and may depend on the propagation direc-
tion, for example, in a crystalline material. The amplitude
of strain will vary depending on which elastic mode is
being driven and the film/substrate thermoelastic prop-
erties as well as the grating periodicity. With regard to
magnetization dynamics, there will be an applied field con-
dition wherein the natural precessional frequency of the
ferromagnetic resonance or a particular spin-wave reso-
nance will match that of the underlying elastic wave, at

which point elastic energy will drive precessional motion
resonantly via magnetoelastic interactions, provided the
spatial symmetries of the particular magnetic and elastic
excitations are similar. The resonance condition can be
visualized either in the frequency domain as an increase
in precessional amplitude in the Fourier transform or in
the time domain by an increase in the temporal range over
which precession occurs and/or the amplitude of this pre-
cession (i.e., in the maximum polarization rotation in a
Faraday geometry). Furthermore, in the time domain, a
characteristic phase evolution is observed as the resonance
is traversed. Finally, we mention that there are conditions
under which parametric frequency-mixing effects have
been observed [38], wherein magnetization precession is
driven at the sum and difference frequencies of the under-
lying elastic wave(s). Until now, we have speculated that
all resonance conditions were the result of the interaction
of the elastic waves with the uniform precessional motion,
i.e. the Ferromagnetic Resonance (FMR).

The first indication of nontrivial dynamics in our exper-
iments is contained in Fig. 2, where we compare the (nor-
malized) temporal evolution at the resonance condition for
two representative magnetic field angles, 15◦ and 60◦ (we
will continue to compare these two angles as representa-
tive angles for the general features of the experiments). The
data shown here are for the Rayleigh SAW resonance for
the Ni/MgO heterostructure at approximately 500 G. Both
plots, being on resonance and driven by the same acoustic
transient (the elastic frequency is independent of magnetic
field angle), precess at the same frequency. However, there
are clear differences. First and most notably, the plots show
a difference in precessional phase—an unexpected feature
for an elastically driven FMR in a uniformly magnetized
film. Second, the shapes of the magnetization precession in
time are drastically different for the two plots; particularly,
the onset time at 60◦ is considerably faster than at 15◦.
Both features (delayed onset, opposite precessional phase)
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FIG. 2. Normalized time-resolved Faraday traces at the
Rayleigh surface acoustic wave resonance for Ni/MgO at two
representative angles. The linecuts exhibit opposite phases of
precession and differences in their onset times.
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(a) (b) (c)

(d) (e)

(f)

FIG. 3. The surface acoustic wave resonance for Ni(40
nm)/MgO. (a) A representative time-resolved Faraday response
is taken for magnet angle φ = 60◦ and at resonance field H ≈
504 G [vertical dashed line in (c),(e)]. The time response (a)
shows the oscillatory dynamics that persist for nearly 6 ns. The
amplitude of the Faraday signal exhibits the resonance depen-
dence on applied field H both for late times (b),(c) and early
times (d),(e). This resonance can be attributed to the interaction
between elastic and magnetic degrees of freedom. The backward
S patterns in (b)–(e) show that the phase changes by π as the
resonance condition is crossed with an increasing field. A com-
parison between (b),(d) and (c),(e) shows an additional change
in the precessional phase between low and high angles, as indi-
cated by the white horizontal lines (the key finding of this paper).
Accompanying the changes in the precessional phase is a sup-
pression of the precessional amplitude for intermediate values
of the magnet angle. The change of precessional amplitude and
phase in dependence on the angle at the peak resonance field is
shown in (f).

are characteristic responses for any Ni/substrate config-
uration and any type of elastic wave resonance (SAW
or SSLW). In the remainder of this report, we provide
details of these unexpected results in order to support
our picture of elastic excitation of a variety of spin-wave
modes in the (optically induced) magnetically textured thin
film.

In Fig. 3(a), we replicate the time-resolved Faraday
plot shown in Fig. 2 to bring attention specifically to
the flipping of the precessional phase for different angu-
lar regimes. A single time trace is extracted from our
full field measurements, portions of which are shown in
Figs. 3(b)–3(e) for representative magnet angles of 15◦

and 60◦. As indicated in the time trace [Fig. 3(a)] the full
field scans are shown for both late time delays [red, pan-
els (b) and (c)] and early time delays [green, panels (d)
and (e)]. Each panel (b)–(e) is individually scaled in ampli-
tude in order to show the shape of the resonance. We draw
attention as well to the backward S shape in each of the
panels. As mentioned previously, this shape reveals that a
π phase shift occurs as the resonance is traversed and is
the hallmark of a driven harmonic oscillator.

This representation brings into focus precessional phase
differences between the angles 15◦ and 60◦ as can be seen
by following the horizontal lines [compare panels (b) and
(c), (d) and (e)]. In assessing the full angular range, we
identify an intermediate angular regime where these two
precessional features interfere, resulting in a suppression of
measured precessional amplitude. This interference effect
is shown in Fig. 3(f), which is extracted from Fourier
transforming the time domain data and assessing the pre-
cessional amplitude at the peak resonance field. Accom-
panying this fitting procedure, the phase of precession is
also extracted and overlaid in panel (f). For Ni/MgO, only
angles between 7.5◦ and 82.5◦ are acquired, but supporting
data in the Appendix Sec. 1 show full angular depen-
dencies for Ni/glass heterostructures and null signals at
0◦ and 90◦, as expected for the magnetoelastic interac-
tion. The suppression in amplitude in an angular range
around 30◦ separates two excitation “lobes.” We find that
all angles in the first lobe display the phase indicated in
Figs. 3(b) and 3(d), while all angles in the second lobe dis-
play the precessional phase indicated in (c) and (e) [i.e., the
extracted phase in (f) is binary]. The same phase-reversal
and amplitude-suppression phenomena are present for all
acoustic frequencies regardless of the acoustic mode (SAW
or SSLW), all Ni/substrate combinations (Appendix Sec.
1), and are only a function of the relative angle between the
excitation wave vector and applied field. The latter are ver-
ified by changing the absolute angle of the transient grating
excitation (by rotating the phase mask angle) and finding
the new magnet angle where suppression occurs.

It is also clear from the data displayed in Figs. 3(b)–3(e)
that the shape of the resonance differs in the two angu-
lar regimes. To extract this behavior, we apply Fourier
transforms to the time-resolved data for all magnetic field
angles. Representative Fourier transforms for 15◦ and 60◦
are shown in Figs. 4(a) and 4(b) along with linecuts and
associated two-Lorentzian fits in panels (c) and (d). We
make two notes that hold generally for all excitation fre-
quencies and substrate materials. (1) For angles in the sec-
ond response lobe (θ > 40◦), the resonance line shape is
well represented by a two-Lorentzian fit, with a main reso-
nance (blue arrow) and a prominent low-field shoulder (red
arrow). The field at which the shoulder resonance occurs
strongly reduces as the magnetic field angle is increased.
(2) In the low angle regime (θ < 20◦), the lineshape is
not well represented by Lorentzians and always exhibits
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a suppressed spectral weight on the low field side of the
resonance. Intermediate angles (near the suppression) are
difficult to assess due to low precessional amplitude and
the onset of mixed-phase behavior.

The positions of the main resonance and shoulder are
plotted in Fig. 4(e), where the error bars represent the
widths of the resonances (the widths of the resonances
do not change appreciably as a function of angle). Cen-
ter positions and widths are extracted from the multi-
peak fitting procedure. Regardless of the fitting function
(Lorentzian or Gaussian), the peak positions are found con-
sistently, while details of the lineshape can only be recov-
ered by utilizing the appropriate function in the appropriate
angular range. In Appendix 2, we show the resonance
line shapes as the angle is increased to show the shoulder
dispersion.

(a) (b)

(c)

(e)

(d)

FIG. 4. (a),(b) The Fourier amplitude of the magnetization pre-
cession shows the driving frequency of approximately 4.8 GHz,
which is dictated by the excitation grating period and acoustic
velocity. Plots (c),(d) present the field-dependent line shapes of
(a),(b) accompanied by two-Lorentzian fits to the data. At all
angles above 40◦, the resonance line shape is well represented
by a two-Lorentzian fit incorporating a main resonance (blue
arrow) and a shoulder (red arrow). At all angles below approx-
imately 20◦, the resonance line shape is not reproduced by a
Lorentzian fit; specifically the low field side exhibits a reduced
spectral intensity. For intermediate angles, the resonance ampli-
tude is small and consequently the line shape is difficult to fit. The
resonance fields of both the main response and high-angle shoul-
der are plotted in (e), where the error bars represent the widths of
the resonances. The strongly dispersing shoulder is evident and
can be seen explicitly (see Appendix 2 for detailed discussion).

(a) (b) (c)

(d) (e)

(f)

FIG. 5. The magnetoelastic response for Co0.2Fe0.6B0.2(40
nm)/glass is observed at low magnet angles only. (a) A represen-
tative time-resolved Faraday signal is displayed for the higher
elastic resonance (SSLW) at H = 190 G and φH = 15◦ [see
the dashed vertical line in (b),(d)]. (b)–(e) Co0.2Fe0.6B0.2 only
exhibits at low magnet angles while the precessional motion at
large magnet angles is strongly suppressed (f). Panels (b)–(e) are
plotted on the same scale. In comparing this result to Ni sam-
ples, we recognize that only the first precessional lobe is active
in Co0.2Fe0.6B0.2, while two distinct precessional lobes are active
in Ni.

We now turn to the response in the second test mate-
rial, Co0.2Fe0.6B0.2, which shows both similarities and
differences in comparison to the Ni sample. First, it is
clear that a similar resonance condition can be achieved
[Figs. 5(a)–5(f)]. At a 15◦ magnet angle, we show the
response for the SSLW (5.25 GHz) resonating at approx-
imately 150 G, while the SAW response can be seen at
much lower field values (< 50 G) (because of the larger
MS, all resonances are downshifted in the applied field
relative to the low MS materials for a fixed excitation fre-
quency). The precessional motion persists for extended
lengths of time, while the width of the resonance as a
function of the applied field is narrow; both features are
related to the low Gilbert damping in this material (preces-
sional damping parameters for these films were previously
measured by members of this collaboration [39]). Further-
more, owing to this narrow resonance, nearby resonance
features are now apparent. This is especially the case on the
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low-field side (approximately 100 G, 1.8 ns) and a sugges-
tion of a resonance on the high-field side (> 250 G). Both
additional resonances clearly have the same frequency as,
but appear to be out of phase with, the main SSLW fea-
ture. However, perhaps the most striking deviation from
the Ni data is the near-complete suppression of preces-
sional motion at large angles. The integrated intensity at
the SSLW resonance is shown in panel (f), indicating that
this suppression is present over a large angular range. To
summarize, a comparison between the two materials indi-
cates that, for Ni, precession occurs in two distinct angular
regimes, accompanied by an intermediate interference,
while for Co0.2Fe0.6B0.2 only the first precessional lobe can
be accessed. In both materials, the first precessional lobe
peaks at approximately 15◦. We mention in passing that
our films of Co0.2Fe0.6B0.2 on glass substrates do exhibit
a uniaxial in-plane anisotropy (significantly weaker than
reported in [40]); however this is determined not to be the
cause of the suppression in high angle response.

It is our contention that these effects are accounted for
if we consider the laterally varying (transient) magnetic
texture, its associated spin-wave distribution, and finally
their resonant interaction with phase-locked elastic waves.
We are guided into this line of thinking based on two
considerations. First, a recent paper by Langer et al. [41]
showed both in calculation and experiment that a laterally
varying demagnetization landscape (along one dimension)
localizes SW distributions in different regions of the MC
based on the angle of the applied magnetic field. Sec-
ondly, in comparison to other works in magnetoelastics,
ours is the only one in which acoustic waves interact with
a spatially modulated magnetization profile, as well as the
only one that shows anomalous angular dependence. In
experiments most similar to ours, the resonant interaction
between surface propagating elastic waves and magnetiza-
tion [30,42,43] exhibits coupling behavior roughly peaked
at 45◦, with no indication of a suppression at intermedi-
ate angles. These studies occur on uniformly magnetized
films, while the experimental technique (acoustic power
transmission) precludes a direct measurement of the mag-
netization and the details of precessional phase, as we
achieve here.

To incorporate the spatial periodicity in our understand-
ing, we take cues from Langer et al. [41] and determine
the SW eigenmodes in our laterally modulated magneti-
zation profile. We calculate the temperature profile using
the TTM until the electrons and lattice are in thermal
equilibrium within the pump excitation volume and then
propagate this temperature gradient in two dimensions
using Comsol’s thermal diffusion capabilities. The sim-
ulation incorporates the thin film and substrate thermal
conductivities as well as the thermal boundary resistance
between the two dissimilar materials. Periodic and insu-
lating boundary conditions are used where appropriate.
From this temperature profile, a magnetization profile

MS(x) is calculated using a Curie-Weiss law for Ni and
data measured on similar films of Co0.2Fe0.6B0.2 [19].
For the timescales involved in our experiments (several
nanoseconds), the temperature and magnetization profile
are taken as constant throughout the depth of the film.

III. THE MODEL

We use two computational methods to simulate the
experimental outcomes and to understand the physical
mechanism behind them: the plane-wave method based
on homemade code and micromagnetic simulations per-
formed with the aid of the MUMAX3 package [44]. For
PWM, we use MS calculated numerically using TTM,
whereas, for MS, we approximated this profile with a
sinusoidal function. Both methods use the Landau-Lifshitz
(LL) equation as an equation of motion:

∂M
∂t

= μ0γ M × Heff, (1)

where μ0 is the permeability of vacuum, γ is the
gyromagnetic ratio, and M is the magnetization vector.
Heff denotes the effective field, which is composed of the
following terms:

Heff = H0 + HDM (r, t) + Hex (r, t) . (2)

The field H0 denotes the in-plane applied external mag-
netic field; HDM(r, t) is the demagnetizing field; and
Hex(r, t) is the exchange field [45]. In our system, the
external field can be rotated in-plane with respect to the
one-dimensional (1D) spatial profile of magnetization sat-
uration (Fig. 1). In both the PWM and MS calculations,
we assume the following values of material parameters:
γ = 176 GHz/T, μ0H0 = 0.05T (500 G), MS,Ni = 0.484 ×
106A/m, exchange length λex,Ni = 7.64 nm, period of
MS(x) � = 1.1 μm, and thickness of the Ni layer d = 40
nm. Since the magnetic landscape modulation is smooth,
and therefore there are no abrupt changes of the static
demagnetizing field, the static component of magnetization
can be considered as saturated and parallel to the applied
field, H0.

The PWM is used, in general, to solve linear differen-
tial equations with periodic coefficients where the solu-
tions have the form of Bloch functions. To express the
dynamical component of the magnetization mi, as well
as the dynamic demagnetizing field hDM,i, we use Bloch
functions of the form

mi (r, φ, t) = mi (r, φ) eiωteik·r,

hDM,i (r, φ, t) = hDM,i (r, φ) eiωteik·r,
(3)

where i denotes the in-plane or out-of-plane direction;
r = (x, y, 0) is the in-plane position vector; k is the wave
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vector; and ω is the angular frequency of SW’s precession.
Using the magnetostatic approximation [46], the demag-
netizing fields in a planar magnonic crystal is calculated
analytically [47] from Maxwell’s equations. For conve-
nience in further calculation, we introduce two coordinate
systems: (xyz) connected to the periodic landscape and
(x′y ′z′) related to the direction of the external field (Fig. 6).
We consider the x′, y ′, z′ components of magnetization M
and effective field Heff upon the spatial coordinates x, y, z
and the angle of the applied field φ [48]. The angular
dependence of the effective field Heff(φ) is included in the
model only by the anisotropy of the demagnetizing field.
Using the method presented by Kaczer [47], we can cal-
culate the x′ component of a static demagnetizing field
HDM,

HDM,x′ (r, φ) = −
∑

G

MS (G) cos2 (φ)

× [
1 − cosh (|G| z) e−|G|d/4] eiG·r, (4)

and the y ′,z′ components of the amplitude for a dynamic
demagnetizing field hDM for k = 0:

hDM,y ′ (r, φ) = −
∑

G

{
my ′ (G) sin2 (φ)

[
1 − cosh (|G| z) e−|G|d/4

]

− imz′(G) sin(φ) sinh (|G| z) e−|G|d/4
}

eiG·r,

hDM,z′ (r, φ) = −
∑

G

[mz′ (G) cosh (|G| z) e−|G|d/4

− imy ′ (G) sin(φ) sinh (|G| z) e−|G|d/4]eiG·r,
(5)

where G = [Gx, 0, 0] is a reciprocal lattice vector. We
use MS (G), mz′ (G), my ′ (G) to denote the coefficients
of Fourier expansions for magnetization saturation MS (r)
and the periodic factor of the dynamical component of
magnetization mi (r). The symbol d stands for the thick-
ness of the ferromagnetic layer.

The LL equation can be transformed (in the linear
approximation) into the algebraic eigenvalue problem for
eigenvalues (the frequencies of SW eigenmodes) and the
eigenvectors [the sets of Fourier components for SW
Bloch functions, mi(G)]. As a result, we obtain the fre-
quency spectrum with the corresponding set of the profiles
of dynamical magnetization for SW eigenmodes for a
selected value of the external field angle φ.

The MS are performed by solving numerically the LL
equation in a real space and time domain [49]. For the exci-
tation of the SW precession, we use a microwave external
magnetic field in the form of the sinc function in the time
domain and spatially homogeneous in the whole sample.
After simulating the response for 30 ns, we perform a fast
Fourier transform of the signal to arrive at the frequency
spectra of SW excitation.

FIG. 6. The top view of the sample: a false-color representa-
tion of the sample temperature (red = hot, blue = cold) for two
periods of the MC. The coordinates (x, y, z) are defined by the
periodic structure, while (x′, y ′, z′) are oriented with respect to
the direction of an external magnetic field. The in-plane (y ′) and
out-of-plane (z′) component of dynamic magnetization depends
on x and y coordinates: my’(x, y), mz’(x, y).

For a given spin-wave spatial profile, we consider (1) the
efficiency of detection by Faraday rotation measurements,
which relies solely on the spin-wave spatial symmetry,
and (2) the elastic-to-magnetic excitation efficiency, which
relies on both SW and elastic spatial symmetries. We deal
with these aspects separately. With respect to detection
efficiency, the largest Faraday signal (collected over many
spatial periods) comes from any mode whose spatial pro-
file exhibits a (relatively) homogeneous phase (a FMR
mode [50] will possess a large Faraday signal [51], while
a mode with an odd node number in � will sum to zero).
To assess which of these modes exhibits the largest Fara-
day detection efficiency, we calculate the net out-of-plane
magnetic moment over a period for the modes of k = 0
with the following formula:

In ∝

∣∣∣
∫ �

0 mn
z (x) dx

∣∣∣
∫ �

0

∣∣mn
z (x)

∣∣ dx
, (6)

where mn
z (x) is the profile of the nth eigenmode for the

out-of-plane component of dynamical magnetization.
With respect to the excitation cross section, we reit-

erate that the spatial period of the MC and that of the
elastic waves are the same, both being derived from the
same optical interference pattern. Furthermore, they are
spatially phase locked in that the hot and cold regions of
the MC experience opposite torques (through magnetoe-
lastic coupling) on each half cycle of the acoustic wave.
Therefore, the excitation efficiency σ of SW due to mag-
netoelastic interaction will depend on spatial profile of SW.
To take into account the nonuniform distribution of the
SW amplitude in one period of MC and the different signs
of magnetoelastic torque in hot and cold regions, we inte-
grate the dynamic component of magnetization mn

z (x) with
the factor cos(2π x/�) to incorporate the magnetoelastic
coupling and the opposite sense torque on both half cycles
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of the elastic wave:

σ ∝ 1
(f − f0)2 + (�f /2)2

sin (2φ)

×
∫ �

0

[
mn

z (x) cos (2π x/�)
]

dx. (7)

The factor sin(2φ) reflects the angular dependence of the
torque resulting from the magnetoelastic interaction of
acoustic waves with the magnetization [30], while the
Lorentzian factor 1/[(f − f0)2 + (�f /2)2] reduces signif-
icantly the excitation efficiency if the frequency of SW,
f = ω/(2π), differs from the frequency of the acoustic
wave, f0, by more than the elastic bandwidth (approxi-
mately 0.5 GHz).

IV. NUMERICAL SIMULATIONS

The outcomes of the PWM and MS calculation are
provided in Fig. 7. In Fig. 7(b), we plot the SW eigenfre-
quency dependence for all low-energy modes as the mag-
netic field angle is changed from parallel to the periodicity
of the magnetic landscape (φ = 0◦) to the perpendicular
direction (φ = 90◦) [52]. The results of both computational
techniques are in agreement for the modes of the largest
detection efficiency—the orange-yellow points (PWM)
overlap with the black-gray lines (MS). The noticeable
features of this result (and all such results for laterally
modulated MS) are the presence of a nearly constant fre-
quency fundamental mode (characterized by the spatial
distribution with zero nodes and homogeneous phase) and
the appearance of a network of higher-order modes whose
frequencies increase as the angle of the magnetic field is
increased. At low angles, several modes dip in frequency
below the fundamental mode upon anticrossing with the
fundamental mode at an intermediate angle φ ≈ 20◦. We
find that the general shape presented in Fig. 7(b) is repro-
duced for a large number of modulation depths (i.e., time
delays) and is shifted up vertically along the frequency axis
as the applied field is increased (correspondingly down
as the field is reduced). We did not attempt to perform
this calculation for very deep modulations or modulations
that deviate strongly from sinusoidal, since they are not
relevant to the timescales associated with elastic dynamics.

The spatial profile of any mode can be assessed as a
function of the magnetic field angle (and strength). At
selected points in the angular dependence, and for the
modes showing the largest detection efficiency (orange or
dark yellow), we show [in Fig. 7(a)] the spatial profiles
indicated as positions I through XII. In this case, the pro-
files are only shown for a fixed applied field strength of 500
G, at a fixed time delay (i.e., a fixed modulation depth). In
particular, we note that the fundamental mode (I, II, III, X,
XI, XII) shows zero nodes, while one of the higher-order
modes labeled (VII, VIII, IX, IV, V, VI) is displayed with

both solid and dashed lines to delineate a change in phase
for different portions of the SW profile [i.e., lateral node(s)
in the precessional wave function]. A symbolic tempera-
ture scale is provided above the modal distributions (with
blue and red regions corresponding to lower and higher
temperature, respectively) to indicate where within the lat-
eral dynamic magnetization profile the SW amplitude is
maximized. For example, we find a general feature of our
calculations to be that at low angles (curves I and II) the
mode is strongly localized in the cold regions of the MC,
which evolves into a uniform profile (curves X, XI, and

(a)

(b)

(c)

D
et

ec
tio

n 
in

te
ns

ity
(a

rb
.u

ni
ts

)

P
re

c.
A

m
pl

.
(a

rb
.u

ni
ts

)

FIG. 7. Plane-wave method and micromagnetic calculation for
angular dependence of the eigenfrequencies of spin-wave modes
in a periodically modulated magnetic landscape. (a) The spatial
distribution of the lowest-energy eignemodes (with the largest
detection efficiency) is marked in the main plot by labels I–XII.
The modes are plotted for two periods of the MC. The red (blue)
color bars above symbolize the hotter (colder) regions of the
magnonic crystal, respectively. The sections of solid and dashed
lines distinguish the regions of opposite precession phase. Spa-
tial profiles are color coded to indicate main resonance (blue)
and dispersing modes, which we associated with the shoulder in
Fig. 4 (orange/green). (b) Angular dependence of the eigenfre-
quencies of spin-wave modes. The color scales for orange-yellow
(PWM) points or black-gray lines (MS) correspond to the sim-
ulated detection efficiency [the darker the line or symbol, the
larger the value of Eq. (5)]. The plane-wave-method calculation
is done for a simulated MS profile (from two temperate mod-
els), whereas the micromagnetic simulations are performed for
a sinusoidal approximation of the MS profile. The bottom panel
(c) presents the simulated procession amplitude of a spin wave
pumped by an elastic wave inclusive of excitation efficiency
[Eq. 6] and detection efficiency [Eq. (7)]. The outcome is two
excitation lobes with a minimum around 40◦.
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XII) as the angle is increased. This latter profile we asso-
ciate with a true FMR displaying a constant phase and
(nearly) constant amplitude over the entire MC. We can
now understand why higher-order modes dip in frequency
below the fundamental at low angles; since a significant
SW amplitude is present in the reduced MS, hot regions of
the sample (e.g., curve VII), the frequency of SW eigen-
modes is therefore reduced. Finally, we note that at low
angles the mode density is high, while at high angles
the modes (at least the lowest two) are energetically well
separated.

The bottom panel of Fig. 7 shows a qualitative estima-
tion of the detected signal in a Faraday rotation measure-
ment. In order to estimate the amplitude of Faraday signal
from the spectrum and the profiles of SW eigenmodes, we
use the phenomenological formula in Eq. (7) and the pro-
cedure described in the Sec. III. The frequency of f = 4.8
GHz driving the SW dynamics and the FWHM = 0.5 GHz
(where �f is the FWHM) of this resonance are taken
from the experimental outcomes (see Fig. 4). By using
this approach, we are able to reproduce qualitatively the
angular dependence of the intensity of a Faraday sig-
nal. The simulated dependence shown at the bottom of
Fig. 7 presents two lobes with a distinctive minimum
around 30–40◦, similar to those seen in the experiment (see
Fig. 3). The relative heights of the two lobes (for lower and
higher angles) are different for experimental and numerical
outcomes.

V. DISCUSSION

We now discuss the connections between the experi-
mental and calculation results, supporting our claim of
the emergence of optically induced MC and our ability
to control the band structure. We begin by considering
the behavior at high magnetic field angles, where the
eigenmode solution of the fundamental mode exhibits a
FMR-like appearance (the SW amplitude is delocalized
over the entire MC structure, homogeneous phase profile).
We note that, while the detection efficiency of such a mode
is large (dark orange in Fig. 7), the excitation efficiency
by the elastic waves is actually quite small. In one period
of the MC, the elastic wave has both compressional and
dilational phases and, thus, cannot drive the fundamental
mode as indicated. However, if we understand the fun-
damental mode to be driven locally, then at each region
of the MC, hot and cold, a FMR can be driven. Such a
locally driven FMR would be exactly the same as in the
case of transducer-based measurements, where a unidirec-
tional multicycle elastic wave drives the FMR precessional
motion locally and out of phase on each half cycle of the
wave [30,42,43,53]. In our experiments, optically probing
the average magnetization precession via Faraday rota-
tion results in the superposition of FMR responses in the
hot and cold regions of the MC, which will add out of

phase (because of the opposite sign of the strain in the two
regions).

The picture of a locally driven FMR can explain one of
the main observations of our data, namely, the difference
in the high angle response between Ni and Co0.2Fe0.6B0.2
films. The marked difference between these two materials
is their Curie temperature; Ni has a low Curie temperature
(600 K) while Co0.2Fe0.6B0.2 has a high Curie tempera-
ture (1300 K). Assuming that the optical absorption and
thermal diffusion are similar in the two materials (both lus-
trous metals deposited on similar silicate substrates), this
large difference in TC translates into a smaller magnetiza-
tion modulation for the case of Co0.2Fe0.6B0.2 and thus a
smaller aggregate Faraday signal. In fact, the case for the
locally driven FMR would result in a nearly suppressed
high angle response (Fig. 7), which corresponds very well
with the results found for Co0.2Fe0.6B0.2 [Fig. 5(f)]. This
suggests that, for high MS materials, any spin-wave mode
with odd spatial symmetry (whether it is a SW with odd
spatial symmetry or a locally driven FMR) would be invis-
ible in a Faraday measurement, while a mode that is
strongly localized in one particular region of the MC (i.e.,
low angles) will be visible in the experiment. Applying
the same considerations to Ni [Fig. 3(f)], we still need to
explain the appearance and the increased signal detected at
high angles. At the points where constructive optical inter-
ference occurs, the sample lattice temperature can easily
reach TC and remains at an elevated temperature for sev-
eral nanoseconds. Nevertheless, as shown in Fig. 7, the
modal profile at high angles should maintain its homo-
geneous phase and amplitude (i.e., the FMR) and, thus,
we continue to expect a reduced second lobe detection,
in effect a result like in Co0.2Fe0.6B0.2. We suspect that
the anomalous behavior in Ni, where in the second lobe
we measure a large precessional amplitude, may be the
result of a reduction in magnetoelastic coupling strength
(not simply the reduction in MS), which is prevalent as
one approaches the Curie temperature [54,55]. We also
mention that similar experiments on arrays of Ni wires, in
this case excited by a uniform optical pulse, also excite
magnetization and elastic dynamics, as well as the long-
lived resonant magnetization precession. In this geometry,
the wires themselves should be considered as a proxy for
the hot regions of the TG signal (suppressed magnetiza-
tion, initial dilational strain) and their physical structure,
such as width, period, material, and substrate, are chosen
to closely mimic the strain amplitude generated in the TG
experiment. Nonetheless, an elastically driven magnetiza-
tion precession as much as ten times smaller is witnessed
for similar excitation fluences taken at the same magnetic
field angle, 15◦ (portions of this work will be published at
a future date). We suspect that this reduced signal level is a
signature of hot Ni wires precessing under the action of the
elastic waves, but with reduced magnetization and reduced
magnetoelastic coupling. To fully vet this idea, additional
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(a) (b) (c)

(d)

(f)

(e)

FIG. 8. (a)–(e) The surface-skimming longitudinal wave
on glass substrates (� = 1.1 μm, f = 5.15 GHz) shows
the same behavior as the Ni/MgO shown in Fig. 3. (f)
A suppression in precessional amplitude at approximately
30◦ separates two excitation lobes with opposite precessional
phases.

fluence-dependent measurements would need to be done
for a series of materials with varying MS values.

Finally, in the same range of large magnetic field angles,
one would also expect to measure the higher-lying preces-
sional mode (IV–VI) when the field is reduced and this
mode crosses the elastic excitation frequency. Based on
the shape of the calculated angular dispersion, the larger
the angle between the MC wave vector and the magnetic
field, the lower in the field the resonance will occur. This
is precisely the behavior that we witness for the high angle
shoulder present in the case of Ni. Again, the visibility of
this mode would rely on suppressed detection efficiency
in the sample hot region, because of both the reduction in
MS and the reduced coupling strength. These same argu-
ments indicate that a similar feature would not be present
for Co0.2Fe0.6B0.2, since the higher lying mode has an even
number of nodes in one period.

At small angles of the magnetic field, the fundamen-
tal mode is concentrated in the cold region of the sample
regardless of the material in question and, as indicated
in Fig. 7, also exhibits a π phase flip in the precessional
amplitude (plotted as a dotted, rather than a solid, line).
To assess this absolute phase of precession, we follow
the fundamental mode profile and precessional phase for
sequential small angular steps from 90◦ to 0◦ (XII–IX,

(a) (b) (c)

(d)

(f)

(e)

FIG. 9. (a)–(e) The Rayleigh surface acoustic wave on glass
substrates (� = 1.1 μm, f = 2.6 GHz) shows the same behavior
as both SSLW on Ni/glass and SAW on Ni/MgO shown in Fig. 3.
(f) A suppression in precessional amplitude at approximately 30◦
separates two excitation lobes with opposite precessional phases.

VIII, VII). Assuming that the mode is well behaved and
continuously evolves as a function of the angle, identifying
the precessional properties of this fundamental branch can
then be used to reveal the properties of all other modes
of precession at low angles. Thus, the fundamental mode
(XII–IX, I, II) can be identified as precessing with a π

phase modulation on either side of the anticrossing point.
This feature of the MC spin-wave distribution directly
relates to the opposite precessional phase for Ni samples
in the high and low magnetic field angles. In both cases,
the predominant signal is derived from precession occur-
ring in the cold regions of the sample, but the nature of
the MC SW distribution dictates that these two must have
opposite phases.

Furthermore, as indicated in the angular dispersion
curve (Fig. 7), the MC at low angles of a magnetic field
exhibits a network of modes at similar energy scales and
within the excitation bandwidth of the acoustic wave.
These additional modes can be seen explicitly in Fig. 5,
where the low Gilbert damping of Co0.2Fe0.6B0.2 results
in narrow field resonances and the appearance of satellite
resonance features [i.e., at early time delays [Fig. 7(d)],
additional resonances can be seen on both sides of the
main precessional mode]. In the high damping case of Ni,
the field-tuned resonances are wide and individual modes
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FIG. 10. Resonance response as a function of applied field
angle for Ni/glass (left) and Ni/MgO (right), showing the main
resonance and the strongly dispersing shoulder indicated by the
arrow.

cannot be identified; however, the line shapes of the low
angle resonance suggest that more than one mode may be
active simultaneously. For example, the out-of-phase pre-
cession of two modes in proximate energy would suppress
portions of the observed resonance and distort the line
shape similar to the observed dynamics in Figs. 4(a) and
4(c), while simultaneously delaying or slowing the onset
of precessional dynamics, for example, as seen in Fig. 2.

VI. CONCLUSION

In summary, we elucidate the magnetoelastic interaction
for a range of magnetic field angles relative to the TG
excitation wave vector. The key finding is the identifica-
tion of distinct angular regimes where precessional motion
can be driven elastically. In the low-TC Ni sample, this is
manifested as the precessional motion of an opposite phase
in two angular regimes, along with their interference and
suppression of precessional motion at intermediate angles.
For high-TC Co0.2Fe0.6B0.2, this is manifested as driven
precessional motion in only one of the previously deter-
mined angular regimes and the near-complete suppression
in the other. To explain these findings, we calculate, using
PWM and micromagnetic simulations, the SW amplitude
distribution in a laterally (periodically) modulated mag-
netization profile as a function of modulation depth and
magnetic field angle, which, in turn, allows us to infer
that in different angular regimes the elastic waves cou-
ple to distinct spin-wave structures. At high angles (the
second precessional lobe), the elastic wave excites a true
FMR response, which we understand to be locally acti-
vated at each half period of the elastic wave. At low angles

(the first precessional lobe), we infer that a spin-wave
mode, localized in the cold region of the sample, is elas-
tically activated. Connected to these findings, we suggest
that in low-TC materials such as Ni, one must incorpo-
rate an understanding of the temperature dependence of
the magnetoelastic constants to understand the observed
dynamics, while this is less prevalent in high-TC materials
since, even in the hot regions of the sample, optical exci-
tation increases the temperature by only a fraction of TC.
The ability to optically generate a transient magnetic land-
scape and control the spatial regions where the localized
magnetic groundstates reside could impact a wide range of
optomagnonics research that currently utilizes artificially
textured materials.
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APPENDIX

We include here additional data sets displaying the res-
onance effects in Ni on glass substrates at both SAW and
SSLW resonances.

1. Angular dependence for Ni/glass at SAW and SSLW
resonances

The change in precessional phase and the accompany-
ing intermediate suppression of precessional amplitude are
also witnessed for the Ni/glass heterostructure [here, soda-
lime glass (SLG) or standard microscope slide glass]. For
this material, a strong but rapidly damped SSLW drives
precession at 5.15 GHz (Fig. 8) and the Rayleigh SAW
resonance at 2.6 GHz (Fig. 9). For both elastic waves, a
phase flip and concomitant intensity suppression occur at
roughly 30◦, which is the same angle range that is wit-
nessed in the main text for the Ni/MgO heterostructure.
The suppression in amplitude is accompanied by the same
binary phase reversal.

2. Dispersion of the shoulder with magnetic field angle

In Fig. 4 of the main text, we show the resonance field
positions of the main and shoulder peaks as a function of
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angle of the magnetic field. Here we show all the data
sets to further enforce the notion of a strongly dispersing
shoulder. For both glass and MgO substrates, we show the
integrated Fourier transform of the resonance responses.
For glass, this is the surface-skimming longitudinal wave
response at 4.8 GHz, while for MgO this is the Rayleigh
surface acoustic wave response at 5.15 GHz. The glass data
are stronger in amplitude and, therefore, the signal to noise
is better. However, in both cases, we see the main reso-
nance peak change from an asymmetric response at 38◦
to develop a shoulder that disperses to lower field values
as indicated by the arrows. The appearance of the shoul-
der in the Ni samples is thus independent of the type of
acoustic wave driving the response, while its observation
that we suggest in the main text is related to the next SW
mode above the fundamental. The absence of this mode
for Co0.2Fe0.6B0.2 we attribute to the symmetry of the SW
and the reduced detection efficiency due to the reduced
modulation depth in a high-TC material.
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4.2 P2 - Anomalous refraction of spin waves as a way to
guide signals in curved magnonic multimode waveg-
uides
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Andriy N. Kuchko from "Institute of Magnetism of NAS of Ukraine" and KPI.

In paper P2, we address the issue of guiding the spin wave in the curved multimode
magnonic waveguide. In any circuit, a signal is directed not only in straight channels but
needs to change direction. This is in particular issue for wave-based operations because
bending leads to scattering to perpendicularly quantized modes and, in consequence, signal
decoherence. One can overcome this by limiting the consideration to only a single-mode
waveguide, where the only solution is a fundamental mode. In our paper, however, we propose
a method for bending the wavefront correspondingly to the bending of the waveguide. Multi-
mode waveguides are of great interest from an application’s perspective due to their higher
operating frequency and bandwidth.

Our research started with the analysis of the one-dimensional problem of spin wave
scattering on a ferromagnetic layer embedded in a ferromagnetic matrix. By solving it
analytically and numerically, we obtain the dependencies of the spin wave’s amplitude and
phase shift on the changes of magnetization saturation or anisotropy field in the ferromagnetic
layer. We could observe that phase shift increases almost linearly across a given range while
the transmission is kept high. It is worth noting that the resonance effect could be observed.
Having the results in hand, we proposed a two-dimensional graded index slab that has
modified magnetic parameters perpendicularly to the direction of propagation. This element
works as a metasurface, where spin wave propagates through, gain phase shift that changes
according to already investigated the one-dimensional case and can change the direction
of the wavefront. We calculated the bending angle with generalized Snell’s law[112, 89],
where the bending angle is proportional to the gradient of the material modulation. This step
was also supported by numerical calculations. Finally, we embedded the graded index slab
into the bent of the waveguide and by simulation in time, we demonstrate that by defining
properly the graded index element one can tilt the wavefront that corresponds to the bent of
the waveguide and thus keep the phase of the signal.

We considered the nanoscale structure made of the alloy Co-Fe-B that would justify
neglecting dipolar interactions in the analytical model. In the first stage of the consideration,
we did not assume any thickness of the system or direction of the external magnetic field
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since the exchange spin wave is insensitive to these parameters. However, we discuss also
the impact of the dipolar interaction for spin wave guiding when the graded index element
is defined by magnetization saturation gradient, and the external magnetic field is applied
out-of-plane to avoid anisotropic propagation that appears in an in-plane magnetized system.

The research presented in the paper P2 was also included in the review paper “Roadmap
on Spin-Wave Computing” published in IEEE Advances in Magnetics[19], where we present
our method on top of the current stage of research. In work P2, I performed numerical
simulations, implemented generalized Snell’s law, prepared most of the graphics, analyzed
data, and wrote a manuscript. I was also the corresponding author.
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We present a method for efficient spin-wave guiding within the magnonic nanostructures. Our technique
is based on the anomalous refraction in the metamaterial flat slab. The gradual change of the material
parameters (saturation magnetization or magnetic anisotropy) across the slab allows tilting the wavefronts
of the transmitted spin waves and controlling the refraction. Numerical studies of the spin-wave refraction
are preceded by the analytical calculations of the phase shift acquired by the spin wave due to the change
of material parameters in a confined area. We demonstrate that our findings can be used to guide the
spin waves smoothly in curved waveguides, even through sharp bends, without reflection and scattering
between different waveguide’s modes, preserving the phase, the quantity essential for wave computing.

DOI: 10.1103/PhysRevApplied.13.054038

I. INTRODUCTION

Phase and amplitude are the fundamental characteristics
of waves. The processing of any kind of wave relies on the
interference effects, which depend on these characteristics.
Thus, the control of spin waves’ (SWs’) phase and ampli-
tude is essential in magnonics [1] to perform both analog
[2,3] and digital [4] SW-based computing [5].

One of the significant challenges limiting the appli-
cation of SWs relates to the capability of coherent and
weakly damped signal transmission. Fulfilling this con-
dition is necessary to transmit the information, encoded
in SW phase or amplitude, between particular parts of
a magnonic circuit, sometimes in a grid of intercon-
nected and crossed waveguides, enabling a flow of SWs
in different directions [4,6]. Typically, the interconnec-
tions are realized by waveguides being narrow and flat
ferromagnetic stripes. Here arises the problem of the
SW scattering on bends of waveguides. If the static
magnetization is saturated and oriented along the direc-
tion of the external magnetic field [7], then the (static
and dynamic) magnetic surface charges, generated by
the normal to the surface component of the magneti-
zation, changes at the bends of the waveguide. On the

*szymon.mieszczak@amu.edu.pl
†opbusel@gmail.com

other hand, if the external magnetic field is low [8]
or the waveguide is properly patterned [9], the static
magnetization follows the shape of the curved waveg-
uide due to the shape anisotropy, which minimizes the
changes of magnetic charges at bends. Nevertheless, the
magnetic volume charges are generated due to curvi-
linear magnetic configuration in this system. In addi-
tion, the exchange interaction is modified, which induces
the effects equivalent to the presence of the anisotropy
field or the field of Dzyaloshinskii-Moriya interaction
[10–12].

The SWs’ wavelength is a few orders of magnitude
shorter than the electromagnetic waves of correspond-
ing frequencies [2]. Therefore, typical magnonic waveg-
uides of the width accessible in photolithographic fabri-
cation techniques are multimodal waveguides even in the
GHz-frequency range. The fabrication of a single-mode
waveguide for SWs is difficult since their widths need
to be narrow, especially for high-frequency SWs [13].
Also, the generation of high-frequency harmonic SWs is
challenging and requires the modification of the standard
methods, based on the SW excitation by radiofrequency
field. The different approaches use the effects of SW
confinement, interference in periodic gratings, coupling
between the materials of high and low ferromagnetic res-
onance frequency or spin vortex core [14–17]. The phase-
sensitive mapping of SW profiles can be achieved using the
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micro-Brillouin light scattering [18,19], which is however
limited in resolution to 200 nm. Only with a sophisti-
cated extension, is it possible to detect SWs with Brillouin
light scattering with a resolution below 100 nm [20]. The
finer resolution can be gained using x-ray microscopy [21]
where the x-ray magnetic circular dichroism is used to find
the spatial map of the phase [22].

To date, the single-mode waveguides for short SWs
can be realized in the systems utilizing domain walls as
magnonic waveguides since they can create narrow poten-
tial wells where SW modes can be localized and propa-
gate lengthwise [23–29]. Difficulties associated with SW
wavelengths’ dependence on the direction of propagation
(anisotropic dispersion relation) are negligible for short-
wavelength SWs where exchange interactions of isotropic
nature dominate over the anisotropic dipolar interactions.
Also, for the magnetic configuration where the magnetic
field is applied perpendicularly to the film’s surface, the
SW dynamics is naturally isotropic, independently on the
frequency of SW. The only obstacle related to that geome-
try is a high bias field demanded to magnetize the sample
uniformly. It can be overcome in materials with strong out-
of-plane anisotropy, but these are usually characterized by
high SW damping.

In multimode waveguides, the mechanism, which leads
to the decoherence of the propagating SWs is scattering
to other, perpendicularly quantized modes. Therefore, the
signal loses the information encoded in the phase. Another
consequence is that the SW propagates along a longer zig-
zag–shaped path [30], which can also be interpreted as
a redistribution of the momentum (wave vector) between
the components, that are transferal and longitudinal to the
waveguide’s axis. It is worthwhile to note, that the trans-
verse quantization of the modes in the planar waveguide is
related not only to the width of the structure but can also
be introduced additionally by the periodic patterning along
the waveguide [31–34].

We point out that the scattering between the modes is
one of the most important factors for the SW decoher-
ence at the bends of the magnonic waveguide. Therefore,
the question arises: can we modify the properties of the
bending region to block the redistribution of incoming
mode into the different outgoing modes, keeping the trans-
mission as high as possible? One possible solution is to
fill the bending region by the material of spatially tai-
lored properties, which refract the SW and redirect its
propagation strictly along the outgoing section of the
waveguide. In other words, we should look for the par-
ticular kind of so-called graded index (GRIN) element for
SWs [35–43]. Recently GRIN elements have been used to
bend SWs for in-plane [37] and out-of-plane [40] mag-
netized films. Another exciting idea is an application of
SW lenses, in particular flat metalenses [44], i.e., lenses of
fixed width introducing different phase delay of transmit-
ted waves alongside the interface. Except for the changes

in the phases of refracted waves, the GRIN element should
not introduce significant changes to their amplitudes. The
interplay between the material parameters of the slab and
its sizes determines the conditions for the resonanant trans-
mission [45,46]. Therefore, we need to design a system to
work in the conditions close to the resonant transmission.

In this paper, we employ the anomalous refraction [47]
achieved in the GRIN slab to change the direction of
coherently propagating SWs at the bend of the waveg-
uide. For anomalous refraction, the wavefronts of refracted
waves are tilted at a desirable angle with respect to wave-
fronts of the incident waves, even at normal incidence.
This phenomenon requires a linear change of the phase of
the transmitted waves alongside the interface, where the
refraction takes place. Its description requires the general-
ization of Snell’s law [47,48]. We develop the analytical
theory for the scattering of exchange SWs on the homo-
geneous ferromagnetic slab of finite width embedded in
a ferromagnetic layer. Minimizing the total energy, we
derive the boundary conditions on the interfaces between
the slab and its surroundings. We obtain the complete rela-
tions between the phases and amplitudes of the incident
and scattered SWs. These calculations are successfully
compared to micromagnetic simulations. Then, we use our
findings to demonstrate both analytically and numerically
an anomalous refraction for the purely exchange SWs inci-
dent from a waveguide to a semi-infinite film through a flat
magnonic GRIN slab. We treat the GRIN element as an
inhomogeneous slab linking the input and output branches
of the waveguide at the bend.

The paper is organized as follows. In the next section,
we describe the analytical model. In Sec. III we show and
discuss the results of the analytical and numerical stud-
ies, which are summarized in Sec. IV. In Appendix A
we present details of analytical calculation, while in
Appendix B details of micromagnetic simulations.

II. MODEL AND METHODS

A. Boundary-condition problem

Let us consider SWs propagating (along the x axis)
through a ferromagnetic layer B (0 < x < d) embedded
as a slab between two half-spaces of the ferromagnetic
matrix A (x ≤ 0 and x ≥ d), as shown in Fig. 1. The slab
B is exchange coupled by thin interfaces of thickness δ

to the matrix A. For simplicity’s sake, we assume that
the system is uniform and infinitely extended in the x-z
plane. We consider the case when the static magnetiza-
tions MA and MB are oriented along the z axis (see Fig. 1)
and are parallel to each other everywhere in the system:
MA(B) = [

0, 0, MS,A(B)

]
, where MS,A(B) denotes the satura-

tion magnetization. The indexes A and B denote materials
of the matrix and the slab, respectively.

The dynamics of magnetization in an effective magnetic
field can be described by the Landau-Lifshitz equation
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FIG. 1. Scattering of the SWs on a ferromagnetic layer (dark
area) embedded in a ferromagnetic matrix (light area). The uni-
axial anisotropy field Ha and the static magnetization M for
ferromagnetic matrix (A) and layer (B) are parallel to each other
and tangential to the plane of the layer. The layer B of thick-
ness d is exchange coupled to the matrix A by the interfaces of
thickness δ.

(LLE):

∂MA(B)

∂t
= −μ0|γ | [MA(B) × Heff,A(B)

]
, (1)

where the effective field is a variational derivative of
the energy W with respect to the magnetization vec-
tor: Heff,A(B) = −(1/μ0)δW/δMA(B). The parameter γ

is the gyromagnetic ratio and μ0 is the permeability
of the vacuum. The total magnetic energy density of
the system w includes the following: the density of
the Zeeman energy

(−μ0H · MA(B)

)
, with the exter-

nal magnetic field H; the exchange energy density[
1/2αA(B)

(
∂MA(B)/∂xi

)2
]
, with the exchange interac-

tion parameter αA(B) = 2Aex,A(B)/M 2
S,A(B), where Aex,A(B)

is the exchange stiffness constant in the material A
or B, respectively; the density of anisotropy energy[
−1/2βA(B)

(
MA(B) · na

)2
]
, where βA(B) = 2KA(B)/M 2

S,A(B)

and na is the unit vector of the easy axis. Anisotropy
energy density is expressed by the uniaxial anisotropy con-
stant KA(B). Assuming that the thickness of the interface δ

is smaller than the exchange length λex =
√

2Aex/μ0M 2
S ,

we can neglect the structure of the interfaces (roughness,
material mixing) and introduce the coupling parameter A,
which is the parameter of the interlayer exchange and
can be expressed via the interface thickness δ [49,50].
We postulate the exchange type of coupling character-
ized by the energy density at the interfaces: x = 0, d
(i.e., the energy per unit area): −AMA · MB, where A =(
Aex,A + Aex,B

)
/(2MS,AMS,Bδ) is coupling parameter.

Minimizing the total energy, we can derive boundary
conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
αA

∂

∂x
+ A

MS,B

MS,A

)
mA − AmB = 0

(
αB

∂

∂x
− A

MS,A

MS,B

)
mB + AmA = 0

, x = 0 , (2)

⎧
⎪⎪⎨

⎪⎪⎩

(
αB

∂

∂x
+ A

MS,A

MS,B

)
mB − AmA = 0

(
αA

∂

∂x
− A

MS,B

MS,A

)
mA + AmB = 0

, x = d . (3)

At each interface between matrix and slab, the solutions of
the LLE satisfy the boundary conditions for the amplitudes
of the dynamical components of magnetization mA(B) =[
mA(B),x, mA(B),y , 0

]
[for convenience, in Eqs. (2) and (3)

they are expressed via the cyclic variables mA(B)=mA(B),x ±
imA(B),y , where i is the imaginary unit] for every interface,
namely at x = 0 and x = d.

We are looking for a solution in linear regime, i.e.,
describing the harmonic precession with the angular fre-
quency ω: m (r, t) = m (r) exp (iωt).

For the general stationary solution m(r), we have to
include the waves propagating both to the left and to the
right. This can be mathematically expressed as

mA = IAeikAx + rAe−ikAx, x ≤ 0, (4)

mB = tBeikBx + rBe−ikBx, 0 < x < d, (5)

mA = tAeikAx, x ≥ d. (6)

The parameters kA and kB stand for the wave numbers in
the matrix and the slab, respectively. The wave numbers
kA and kB depend on the external magnetic field H and
material parameters: saturation magnetization MS,A(B) and
anisotropy field Ha,A(B) = 2KA(B)/(μ0MS,A(B)). The ampli-
tude of incoming wave is normalized to 1: IA = 1. All the
remaining amplitudes rA, tB, rB, tA are, in general, complex
valued: RAeiϕRA , TAeiϕTA , TBeiϕTB , RBeiϕRB and contain the
information about the real amplitudes RA, TB, RB, TA and
phases ϕRA , ϕTA , ϕTB , ϕRB .

For calculating the complex amplitudes of SWs, namely
rA, tB, rB, and tA [presented in Appendix A, Eqs.
(A1)–(A4)], we use the boundary conditions Eqs. (2)
and (3).

B. Huygens-Fresnel principle and generalized Snell’s
law

Let us discuss the design of a GRIN slab in the form of
the rectangular region with a gradual change of the mag-
netic parameters enabling the direction of the transmitted
waves to be steered. To describe the wave refraction in this
system, we use the Huygens-Fresnel principle [51]. This
concept was developed for optics but can be adapted to
other types of waves [52]. The postulation states that every
point on a wavefront is itself the source of the cylindrical
wavelets, and the sum of these cylindrical wavelets forms
the new wavefront. In the considered case, we assume that
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the source points are located at the right interface of the
GRIN slab (at x = d) and are aligned along the y axis.
We can calculate the complex amplitude at any position
on the right side of the GRIN slab using the amplitude
and phase shift obtained from the solution of the bound-
ary problem. Postulation given by Huygens-Fresnel can be
mathematically expressed as

T (r) =
∑

j

Tj ei[k·(r−rj )+φj ]
∣∣r − rj

∣∣ . (7)

The summation is done over the interface of the GRIN slab
(at the position x = d) at a large number of locations rj =
[d, yj ]. The phase φj is tailored by changing the saturation
magnetization or anisotropy field in the GRIN slab. The
partial amplitude Tj indicates the transmittance of the SW
through the GRIN slab into the semi-infinite medium A
defined as abs(tA)2 and the phase φj defined as arg(tA) [Eq.
(A1) in Appendix A].

Another approach for calculating the angle of the
refracted wave is to use the generalized Snell law [47,53].
It states that a nonzero gradient of phase along the inter-
face induces an additional perpendicular to the interface
component of the wave vector. Mathematically it can be
expressed by the following formula:

kincident,y = krefracted,y + dφ

dy
, (8)

where φ is induced phase along the y axis and kincident
and krefracted are the wave numbers of the incident and
refracted wave, respectively. In the case with known φ(y)

dependence along the y axis, the generalized Snell law
together with SW dispersion relation, can be used to pre-
dict the overall direction of the wave vector of the outgoing
SWs from the GRIN slab. In our case, for normal incident
waves, kincident,y = 0, therefore, krefracted,y = −dφ/dy. The
missing component of wave vector, perpendicular to the
interface, can be calculated with the use of SW dispersion
relation k(ω): k2

refracted,x = k2(ω) − k2
refracted,y . Overall, the

GRIN slab acts here as a metasurface. Note, that in pho-
tonics, metasurfaces can also have widths comparable to
the wavelength [54].

III. RESULTS

In order to design the GRIN slab, that is schematically
shown in Fig. 2, we propose to use Co-Fe-B layer as a
base material due to high saturation magnetization, rela-
tively low SW damping [55,56], which is crucial for SW
processing, [57] and because of the possibility of tailor-
ing the material parameters, required to obtain anomalous
refraction.

By implantation of Ga ions, we can locally reduce
the magnetization and create the distribution of satura-
tion magnetization of high spatial resolution [46,58,59].

FIG. 2. Geometry of the simulation system with the GRIN
element. The system consists of the ferromagnetic slab (B) char-
acterized by the gradient of magnetic parameters (e.g., saturation
magnetization MS or anisotropy field Ha), which links the straight
section of the waveguide and the semi-infinite plane made of the
homogeneous material A. The magnetic parameters in the slab
B are changing in the y direction. At each x-z cross section (see
Fig. 1), the phase shift of transmitted wave is different, which
allows refracting the plane wave propagating initially in the x
direction. The absorbing material is placed at the sides of the
simulated system, in order to avoid the impact of boundaries.
The external magnetic field H is applied along the z direction;
the static magnetization and the anisotropy field are aligned with
the external field.

From the other side, when the sufficiently thin layer of
Co-Fe-B is deposited on MgO, the surface-induced out-of-
plane anisotropy can force the perpendicular orientation of
the magnetization [45,60]. The effective anisotropy field
(including both the shape and surface, magnetocrystalline
anisotropy) can be controlled by the annealing in the fab-
rication process or by the application of the electric field
[61–63]. The perpendicular orientation of the magnetiza-
tion ensures the isotropic SW dispersion, which simplifies
the design of refraction effects. The effect of continuous
change of saturation magnetization can be achieved also
in a magnetic insulator, like yttrium iron garnet (YIG) by
temperature [64] or strain [65].

At the initial stage, we perform the analytical stud-
ies of the SWs’ transmission through the slab formed in
a Co-Fe-B matrix by the modification of the saturation
magnetization or the anisotropy field.

Particular attention is paid to the identification of the
resonances of the slab, where the amplitude of transmitted
SWs is the highest. The results are cross checked by micro-
magnetic simulations. Then, we present the outcomes of
micromagnetic simulations for the guiding of the SWs in
the waveguide with the GRIN slab at the bend. The GRIN
slab is designed using the results from the initial stage and
used to guide the SWs coherently through the bend of the
magnonic waveguide.

A. Spin-wave propagation through the
slab—one-dimensional scenario

Let us analyze the SW transmission through a uni-
form slab of finite width with modified either saturation
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magnetization or uniaxial anisotropy field. Equations
(4)–(6), with Eqs. (A1)–(A5) are taken into account to
determine the phase shift arg(tA) and the transmittance
abs(tA)2 of the transmitted SWs in dependence on fre-
quency or other considered magnetic parameters (e.g., the
saturation magnetization or the anisotropy field).

To demonstrate various aspects of the system, as well
as to check the validity of the model, we show the results
of the analytical calculations and their comparison with
the results of the micromagnetic simulations for four sce-
narios: (i) MS,B = 800 kA/m in the slab is fixed, the
exchange constant Aex,B is equal to 20 pJ/m, the fre-
quency of SWs varies in the range of 14–40 GHz and the
uniaxial anisotropy is neglected, (ii) MS,B = 1200 kA/m,
Aex,B = 27 pJ/m, frequency of SWs varies in the range of
14–40 GHz and the uniaxial anisotropy KB = 50 kJ/m3

is included, (iii) MS,B varies in the slab in the range of
300–800 kA/m, Aex,B = 20 pJ/m, frequency of SWs is 25
GHz and the uniaxial anisotropy is neglected, (iv) MS,B =
1200 kA/m, Aex,B = 27 pJ/m, SWs frequency is 25 GHz
and the uniaxial anisotropy KB changes in the range of
0–490 kJ/m3. In all cases, the slab is 150 nm wide. Sur-
rounding material A is assumed to be made from Co-Fe-B
with MS,A = 1200 kA/m, Aex,A = 27 pJ/m and KA = 0.
The external magnetic field μ0H = 0.5 T is aligned along
the z axis. Details of the micromagnetic simulations are
presented in Appendix B.

We now analyze the dependence of the transmittance
and phase shift of transmitted SWs on the frequency for
the slab formed by the modification of saturation mag-
netization and uniaxial anisotropy, cases (i) and (ii). The
results for these two cases are presented in Figs. 3 and
4, respectively. To explain these frequency dependencies,
we should discuss the role of the transmission of exchange
SWs in the SWs’ dispersion relation

k(ω) =
√

a
(

ω

ω0
− b

)
, (9)

where ω0 = γμ0H is proportional to the value of exter-
nal field H and is expressed in the angular frequency unit,
the factor a = MSμ0H/(2Aex) is proportional to the satu-
ration magnetization, and the term b = 1 + Ha/H changes
linearly with the anisotropy field Ha = 2K/(μ0MS). By
the change of MS, the wave vector is scaled, regardless
of the range of frequencies. However, the impact of Ha
on the wave vector is significant only for low frequencies
(ω is similar to ω0) when the additive term b cannot be
neglected. Moreover, for lower frequencies and sufficiently
large positive value of the uniaxial anisotropy (b > ω/ω0),
the wave vector becomes imaginary and the SWs can only
tunnel.

The decrease of MS in the slab B (for Aex, H , K kept
constant in the system) results in the decrease of k and
the reduction of the phase acquired by the transmitted

FIG. 3. SWs’ wavelength (blue color) as a function of fre-
quency. Red dots indicate fulfilled resonant conditions by Eq.
(10). Enhancement of transmittance at these frequencies can be
observed. Values on the horizontal axis represent the resonant
frequencies. The transmittance (black color) and the phase shift
(green color) for SWs traveling through the 150-nm-wide slab
with respect to the frequency. Dots and squares represent the val-
ues obtained in the numerical simulations, while the solid lines
represent the analytical results. Dashed lines represent the case
when the reflection in the system is neglected. The value of the
external field is equal to 0.5 T, reduced MS in the slab is equal to
800 kA/m and reduced Aex to 20 pJ/m.

SW. As a result, the phase shift is negative (referring
to the SWs propagating at the same distance d in the
matrix A where MS is not reduced). This negative phase
shift is growing with the increasing frequency �ϕ(ω) =
d

[
k(ω, MS,B) − k(ω, MS,A)

]
—see green lines and points in

Fig. 3, because k(ω) is an increasing function of the fre-
quency. The increase of the anisotropy field Ha in the
slab B reduces the value of k. Therefore, the SWs gain
additional phase during the transmission through the slab
(referring to the SWs propagating at the same distance in
the matrix A where Ha are not added). This positive phase
shift is growing (see green lines and points in Fig. 4) for
the same reasons as in the case of the slab formed by the
change of MS.

It is visible that the value of transmittance oscillates. It is
especially noticeable in the case of the slab induced by the
MS reduction, Fig. 3. To explain this behavior, the disper-
sion relations of SWs as the dependencies of wavelength
on frequency λ(ω) = 2π/k(ω) are plotted in Figs. 3 and 4
[cf. Eq. (9)]. The resonance condition for wave transmitted
through the slab of the width d reads

2d = Nλ(ω), (10)
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FIG. 4. SWs’ wavelength (blue color) as a function of fre-
quency. Red dots indicate fulfilled resonant conditions, Eq. (10),
where we observe an enhancement of the transmittance. Values
on the horizontal axis represent the resonant conditions. Trans-
mittance (black color) and phase shift (green color) for SWs
propagating through the 150-nm-wide slab with respect to the
frequency. Dots and squares represent the values obtained in
numerical simulation, while the solid lines represent the analyti-
cal results. Dashed lines represent the case when the reflection in
the system is neglected. The value of the external field is equal to
0.5 T and the uniaxial anisotropy constant K = 5 kJ/m3 within
the slab.

where N is the natural number. The condition Eq. (10)
corresponds to the constructive interference of the wave
after the round trip at a distance of 2d. The frequencies
for these resonances are marked in Figs. 3 and 4 by the
red arrows. They match the locations of the maxima of the
transmittance. In order to confirm the presence of stand-
ing resonance modes within the slab, we perform both the
analytical calculations and micromagnetic simulations. We
calculate the squared dynamical magnetization, averaged
in time, at the frequencies corresponding to the maxima of
the transmission. It can be observed that the slab works as a
resonator (see the results in Appendix A), similar to Fabry-
Perot resonators known in optics [51]. It is worthwhile to
note, that the fabrication of the sharp interfaces between
the GRIN slab and its surrounding might be problematic,
especially when one would like to use the ion implantation
to shape the distribution of saturation magnetization within
the sample. The effect of a smooth transition between the
slab and surrounding is important for the sharpness of res-
onances, but it does not affect significantly the phase shift
acquired by the SW.

One can predict the phase shift, which SWs gain during
the transmission through the slab, by defining a magnonic

refractive index [37,66]. However, this approach takes into
account only the refractive properties of the bulk material
expressed in the dispersion relation. By solving the LLE
[Eq. (1)] with clearly defined boundary conditions [Eqs.
(2) and (3)], we can obtain full information about the SWs’
refraction in the system. Hence, we can see in Figs. 3 and
4 the corrections, which come from taking into account the
reflection from boundaries. The dashed lines with a lighter
color indicate the cases when no reflection is considered in
the system. As we can see, even for strong exchange cou-
pling (when the majority of energy is transmitted for any
condition) at the interface, A, the difference is noticeable.
For weaker coupling, where a more significant fraction of
energy is turned back, the impact on the phase shift and
the transmittance could be even more significant [45]. This
points out that the design of the GRIN slab has to take into
account the presence of the resonances.

Numerical calculations fully support the analytical
approach presented in this part, and thus the validated
model is used for further stages of this study.

Let us now discuss cases (iii) and (iv), described at the
beginning of the section. Here, we aim to control the SW
guiding in the confined structures like waveguides using
the GRIN slab, so in the following we introduce the change
of the material parameters, saturation magnetization MS
and the anisotropy field Ha. According to Fig. 2, we change
the material parameters of the slab at fixed frequency of
SWs f = ω/(2π) = 25 GHz.

In Fig. 5(a), the transmittance and the phase shift
with respect to MS in the slab are presented. The reso-
nant phenomenon is visible, like in the previous cases.
The modulation of the transmittance is around 20%.
The dashed black line represents the transmittance of
SWs through the slab when the reflection is neglected.
The impact of the resonances is visible, and taking into
account the resonant effect is well based. The phase
shift changes rather smoothly in the considered range of
MS, and in total, the difference is around 1.75π . Devia-
tions of the green solid and squared lines (analytical and
numerical results, respectively) from the dashed line are
minor and visible mainly near the resonances. Fig. 5(b)
shows the results for the transmittance and phase shift
as a function of the anisotropy constant K in the slab
in the range of 0–490 kJ/m3, which is equivalent to
the presence of the anisotropy field μ0Ha in the range
0–0.8 T.

We can see that for the anisotropy field larger than
0.4 T, the transmittance drops dramatically, and the res-
onance peaks are not observed anymore. This feature is
attributed to the lack of oscillating solution within the
slab. The SWs need to tunnel through the slab with a
significant reduction of the amplitude. Just below this
value [Ha = 2π/(γμ0)f − H ], the resonant behavior of
the transmittance is observed with a high variation of the
transmittance.
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(a)

(b)

FIG. 5. Transmittance (black color) and phase shift (green
color) for SWs traveling through the 150-nm-wide slab with
respect to (a) MS and (b) the anisotropy field in the slab. Dots and
squares represent the values obtained in numerical simulation,
while the solid lines represent the analytical results. Dashed lines
represent the nonresonant case. The constant frequency equal to
25 GHz and external field equal to 0.5 T are considered. (a) The
reduced exchange Aex is equal to 20 pJ/m. Resonant peaks are
visible for the specific values of MS . (b) MS and Aex remain the
same as in the matrix, i.e., 1200 kA/m and 27 pJ/m, respectively.

B. Anomalous refraction of spin waves

Based on the model developed in Sec. II, we design a
GRIN slab that bends wavefronts of the incident waves
in the desired way. The slab is an element that modifies
the phase of the incoming plane waves (at the interface
located in x = 0) to gain the linear change of the phase of
the transmitted waves alongside the interface (at x = d).
This idea is based on the general concept of tailoring
the phase changes alongside the interface and provide
the desired functionality, like focusing [44], beam steer-
ing or delay [67]. In the present case, we want to design
an element suitable for the change of the direction of
SWs’ propagation. Let us study numerically the case of
the two-dimensional slab with the gradient of MS, like it
is schematically presented in Fig. 2. In the section of the
straight and flat waveguide of the width 100 nm, we excite

(a)

(b) (c)

FIG. 6. The squared amplitude of SWs propagating in the sys-
tem shown in Fig. 2, at the frequency 25 GHz. (a) When SWs
reach the semi-infinite medium after the slab, the new wavefront
starts to form due to the gradient of magnetic parameters. The
bending of SWs reaches the angle of ca. 36◦. (b) The color palette
of SW. The color indicates the phase, while the intensity indicates
the amplitude. (c) The bending of SWs ca. 36◦ obtained accord-
ing to the Huygens-Fresnel formula [Eq. (7)]. Source points of
cylindrical SWs are located on the right border of the slab—at
the position d. The amplitude of the transmittance and the phase
shift are obtained from the boundary-condition problem, like in
Fig. 5(a).

the plane wave, which propagates along the x axis. The
waveguide is attached to the large plate of the same thick-
ness and made of the same material. At the front of the
plate, we defined the 150-nm-wide slab—see Fig. 2. In the
slab, we take the reduced value of MS, which is increasing
from 300 kA/m up to 800 kA/m on the distance 100 nm, in
direct contact with the waveguide. Above MS goes to the
value of a semi-infinite plane, it is MS = 1200 kA/m.

The results of the numerical simulations are presented
in Fig. 6(a). The wavefront changes the direction, and the
outgoing SWs are bent. The arrows in Fig. 6(a) indicate
the direction of the refracted waves estimated with Eq. (8).
Although the gradient of the phase shift is not perfectly
linear, this estimation seems to be very good.

The results of the numerical simulations are also com-
pared to the results of the analytical consideration using the
Huygens-Fresnel principle. Complex amplitudes at every
position are calculated according to the postulation given
by Eq. (7). We assume that at the position d [as it is shown
in Fig. 6(c)], we have a line of sources of cylindrical waves.
Figure 5(a) presents the transmittance and phase shift of
the SW that we need to put into Eq. (7). The application
of this equation is shown in Fig. 6(c). Since the phase
shift changes smoothly along the y axis, the wavefront of
the SWs transmitted through the slab is reconstructed in a
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way so that we observe the bending of SWs of approxi-
mately 36◦. We can conclude that the procedure based on
the Huygens-Fresnel principle and the approach based on
the generalized Snell law are suitable for the estimation of
the results of the numerical simulation, and these analytical
approaches can describe the system.

C. Graded index slab at the bend of the magnonic
waveguide

We use the GRIN slab, designed in the previous section,
to guide the SWs through the bend of the waveguide. The
numerical study is performed with the aid of micromag-
netic simulations (see Appendix B).

Let us consider two straight sections of the flat waveg-
uides of the width 100 nm, made of Co-Fe-B, and
connected at the angle 36◦. At this angle, we observe
the refraction of the SWs by the GRIN slab with the
assumed gradient of the saturation magnetization (Fig. 6).
In Fig. 7(a), we present this curved waveguide with such a
GRIN slab placed at the bend, whereas the results for SWs’
propagation through the same structure without the GRIN
element are presented in Fig. 7(b). These two systems
guide the SWs differently. We can see the SWs’ interfer-
ence pattern in the outgoing section of the bent waveguide
without the GRIN slab. Such behavior results from the
scattering of the incident fundamental mode (not quan-
tized across the waveguide’s width) to the higher modes
(quantized across the waveguide’s width). As a conse-
quence, the information encoded into the phase of the
incident fundamental mode is lost. On the other hand, the
application of the GRIN slab introduces the anomalous
refraction at waveguide’s bend causing that the outgoing
waves to propagate along the waveguide in the form of
the fundamental mode with nondisturbed wavefronts and
well-defined phase. The details of the shape of the bend
are irrelevant as long as its geometry follows the rotation
of the SW’s wavefront in graded index material.

In the previous calculations, the dipolar interactions are
neglected, since their full consideration in the boundary-
condition problem is a complicated task. Therefore, all
investigations are limited to the exchange SWs, including
the micromagnetic simulations. Such an approach is justi-
fied because the exchange interactions dominate over the
dipolar ones for short-wavelength SWs. However, in order
to verify the applicability of the GRIN slab, we perform
simulations that also include dipolar interactions.

Let us discuss the waveguide with a GRIN slab in
which the gradient of the anisotropy field is introduced.
In this scenario, the static dipolar magnetic field is uni-
form throughout the whole system, i.e., if H > MS, like in
our system, Hdem,0 = −ẑMS, since the saturation magneti-
zation is uniform, which makes the system easier to model.
Following Fig. 5(b), we choose the range of anisotropy,
which needs to be applied to have the same bending of

(a)

(b)

FIG. 7. (a) Propagation of SWs in the Co-Fe-B waveguide,
where the GRIN slab is placed at the bend, releases the anoma-
lous refraction. The GRIN slab has the same gradient of MS as
used in Fig. 6. The color map represents a dynamical compo-
nent of the magnetization in the y direction. A snapshot is taken
at the moment when a steady state is reached. At the begin-
ning of the horizontal branch of the waveguide, the microwave
antenna excites the SWs and at the end of the tilted branch, the
SWs are damped to avoid any reflection. After taking a turn, the
SWs propagate smoothly. (b) SWs’ propagation in the waveguide
without a gradient of magnetic parameters. After taking a turn,
the SWs show a complex behavior due to interference between
different modes of the waveguide. The width of the waveguide is
100 nm. The material parameters are the same as for the system
presented in Fig. 6.

SWs, as for the studies presented in Fig. 7. Keeping the
same shape of the GRIN slab, we choose the gradient
of the uniaxial anisotropy field in the range from 0.27 to
0 T. The results are compared with the case when the
dipolar interactions are included in the micromagnetic
simulations, for the same geometry and the values of mag-
netic parameters. For the 100-nm-wide and 5-nm-thick
waveguide, the static demagnetizing field shifts down the
dispersion relation, so in order to keep the same wave vec-
tor for the considered frequency (25 GHz), it is necessary
to apply the external magnetic field of increased value with
respect to simulations without the dipolar interactions. We
analyze the dispersion relations and find that an additional
field μ0H = 1.35 T compensates the effect of the static
demagnetizing field. The cases when the dipolar interac-
tion is taken into account or neglected, are compared in
Fig. 8. Only a small difference is visible, which means that
the impact of the dipolar field is not significant. The dif-
ference results from different boundary conditions at the
edges of waveguides, where spins are partially pinned [68].

It is necessary to note, that in the case of the GRIN
slab with the gradient of saturation magnetization in the
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(a)

(b)

FIG. 8. SW propagation in the bent waveguide of the same
geometry, as in Fig. 7. The GRIN slab placed at the bend is char-
acterized by the gradient of anisotropy field Ha. The gradient of
Ha is chosen to obtain refraction at the same angle, as in Fig. 7.
In(a) the dipolar interaction is included and in(b) it is neglected
in the micromagnetic simulations.

out-of-plane magnetized thin film, the static demagnetizing
field is not uniform. As a result, both the saturation mag-
netization and static effective magnetic field are changed
in parallel, and it also needs to be taken into account in the
design of the GRIN slab for SW steering, which is out of
the scope of this paper.

IV. SUMMARY

We present a comprehensive study of the SWs’ prop-
agation through the GRIN slab with spatially modulated
saturation magnetization or uniaxial anisotropy. Using the
analytical model, cross checked by numerical simulations,
we are able to relate the phase acquired by SWs during the
transmission through the GRIN slab at different locations
to the values of the spatially dependent magnetic parame-
ters. With this knowledge, we design the GRIN slab, ensur-
ing the phase-coherent refraction of SWs at a desirable
angle, determined by the gradient of saturation magnetiza-
tion or the gradient of the anisotropy field. Notably, the pre-
sented GRIN slab enabled a wide range of phase changes
(ca. 1.75π ) for high and uniform transmission of SWs
(transmittance in the range of 80%–100%) enhanced by
utilizing the Fabry-Perot resonances. The analytical model
and the main numerical demonstrations are performed
for the exchange SWs, later validated with micormag-
netic simulations for selected cases with included dipolar
interactions.

As an application, we demonstrate the GRIN slab
used to guide the SWs coherently in fundamental mode

along the bend in a magnonic waveguide. The micromag-
netic simulations are performed for realistic structure and
showed the possibility for experimental realization of this
idea.

The GRIN slab considered in this paper can be acti-
vated on demand by the voltage-induced anisotropy [63].
The spatial changes of the perpendicular anisotropy can be
introduced by the variation of the thickness of an insulat-
ing spacer separating one of the electrodes. This can open
the route for voltage-controlled routing of SWs.

The proposed approach can be verified experimen-
tally by state-of-the-art techniques, like x-ray magnetic
circular dichroism [22,69], phase-resolved Brillouin-light-
scattering [70], or broadband-microwave spectroscopy
[46,71]. We believe that our findings are substantial for
further development of the circuits for analog and digi-
tal computing based on SWs and contribute to the field of
magnonics.
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APPENDIX A: SPATIAL PROFILES OF THE SPIN
WAVES, RESONANTLY SCATTERED AT THE

MAGNETIC SLAB

Solution of the LLE, Eq. (1), provides information
about the complex amplitudes of SWs, which propagate in
the system. The one-dimensional model presented in this
paper has the following solutions:

tA = 4eid(kB−kA)

αAαBkAkB
[
( f +)2 − e2idkB( f −)2

] , (A1)

rA = −( f −)∗f + + e2idkB( f +)∗f −
[
( f +)2 − e2idkB( f −)2

] , (A2)

tB = 2f +

αBkB
[
( f +)2 − e2idkB( f −)2

] , (A3)

rB = 2e2idkB f −

αBkB
[
( f +)2 − e2idkB( f −)2

] , (A4)

where f ± is an auxiliary function, namely

f ± = MB

αAMAkA
± MA

αBMBkB
− i

A
,
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and (f ±)∗ is its complex conjugate. The dependence of the
wave number on angular frequency kA(B)(ω) expresses the
dispersion relation:

kA(B) = 1
√

αA(B)MS,A(B)

√
ω

γ
− μ0

[
H + Ha,A(B)

]
, (A5)

where H and Ha,A(B) are external and anisotropy fields,
respectively.

Parameter δ is the thickness of the interfaces and it is
a fitting parameter. We find that the best match between
analytical and numerical results is achieved for the value
of δ = 0.5 nm. It is a reasonable value since the size of the
unit cell in micromagnetic simulations is 1 nm.

Information about the energy flow (the amplitude
of SWs) and phase shifts can be extracted from Eqs.
(A1)–(A4), and as we can see in Figs. 3–5, both quantities
fit perfectly to micromagnetic simulations.

Let us present the spatial profile of dynamical compo-
nents of the magnetization vector. Set of Eqs. (4)–(6), with
coefficients defined in Eqs. (A1)–(A4), describe the ana-
lytical solution of SW in complex form. To visualize these
spatial profiles, the magnetization should be presented in
the real form:

m = Re
[
m̃ei(kx−ωt)] = |m̃| cos (kx − ωt + arg m̃) , (A6)

where m̃ is a complex coefficient defined for a specific
region. It can be incidence, reflection, or transmission
coefficient, as defined in Eqs. (A1)–(A4).

In order to compare the results of the analytical model
with the ones from numerical simulations, we need to get
rid of the explicit dependence on time, because we are
not able to compare some exact moments in time. Hence,
we average the squared magnetization component in time.
The same as we did with the output from simulation after
reaching a steady state. The comparison is shown in Fig. 9.
We plot the spatial profile of SW for five specific frequen-
cies (see Fig. 3), Figs. 9(a)–9(e), where transmittance is
equal to 1 (see Fig. 3). Dark background represents the
slab B. Standing wave is visible, which indicates the exis-
tence of resonant effect in accordance with Eq. (10). The
slab is coupled to the surrounding, and the transmission
is relatively high. Therefore, the nodes are not located at
zero level, because the amplitude of the reflected wave
is always lower than the amplitude of the incident wave.
On the right areas (light background), SWs are propagat-
ing with a constant amplitude, so after averaging, we get a
straight line. Its level indicates the energy flow.

Figure 9 is another remarkable confirmation of the
validity of our analytical model.

(a)

(b)

(c)

(d)

(e)

FIG. 9. Normalized spatial profile of dynamical component of
the magnetization for the five lowest resonances (a) 14.6 GHz,
(b) 16.4 GHz, (c) 19.6 GHz, (d) 23.8 GHz, and (e) 29.4 GHz.
Width of the slab is 150 nm, MS in the matrix is 1200 kA/m and
Aex = 28 pJ/m. External field is 0.5 T, reduced MS within the
slab is 800 kA/m and reduced exchange stiffness constant Aex is
20 pJ/m. The presented resonances correspond to Fig. 3.

APPENDIX B: MICROMAGNETIC SIMULATIONS

The micromagnetic simulations are performed with the
use of the mumax3 package [72], which is the finite-
difference time-domain solver of the full Landau-Lifshitz
equation. The simulations are conducted to (i) calculate the
transmittance and the phase shift of the waves transmitted
through the one-dimensional slab, (ii) demonstrate anoma-
lous refraction in thin film, and finally, (iii) to demonstrate
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a slab suitable for SW bending in magnonic waveguides.
In all these cases, the steady state is simulated, i.e., the
response of the system after long, continuous excitation of
SWs at a single frequency enabling SWs to travel to the
sides of the simulated system.

In order to neglect the influence of the reflections from
the borders of the simulated system and, therefore, sim-
plify interpretation of the results, the absorbing boundary
conditions are implemented around the sides of the sim-
ulated domain (see Fig. 2). In all the simulations we
consider SW propagation in 5-nm-thick Co-Fe-B film
(MS = 1200 kA/m, Aex = 27 pJ/m and reduced damp-
ing to 0.0001) in the presence of the out-of-plane mag-
netic field (applied along the z axis) of value μ0H =
0.5 T and discretized with cuboid elements of dimen-
sions (1×1×5 nm3). These values are comparable to the
exchange length. Magnetic parameters are modulated only
in the region of the slab described in the main part of the
paper. In order to be consistent with the analytical theory,
which neglects the dipolar interactions, most of the simula-
tions are performed with neglected dipolar interactions as
well. Nevertheless, in order to further validate this model,
a set of micromagnetic simulations with included dipolar
interaction is performed to demonstrate the applicability
of the considered slabs to bend SW in a curved waveguide
(see Fig. 8).

To calculate the transmittance and the phase shift of
the transmitted SW through the slab with respect to
frequency or various magnetic parameters, we define a
one-dimensional geometry, i.e., discretized by Lx × Ly ×
Lz (4096 × 1 × 1) unit cells. These values are obtained by
running two separate simulations, i.e., a reference simu-
lation without the slab, and the additional one with the
slab. Then, the results of these simulations are compared in
order to extract the values of transmittance and phase shift.
The transmittance was calculated as a ratio of squared
amplitude and the phase shift—as a difference of the SW
phases. SWs are excited by an rf magnetic field of fre-
quencies in the range of 14–40 GHz for fixed material
parameters or 25 GHz for various material parameters of
the slab. rf field is applied locally in a 6-nm narrow region,
located on the left side of the slab at a distance of 1548 nm
from the slab.

To demonstrate an anomalous refraction in action,
we define a two-dimensional system discretized by
Lx × Ly × Lz (1024 × 1024 × 1) unit cells. The scheme of
the system is presented in Fig. 2. SWs are excited by
an rf field of frequency 25 GHz applied locally in a 6-
nm narrow region located on the left side of the slab
in the distance of 232 nm. Three different areas can be
distinguished there. On the left is the narrow part, 100-nm-
wide waveguide, which introduces SWs into the system.
In the middle is a 100-nm-wide and 150-nm-long slab
with a gradient of the magnetic parameters. The gradient
of the magnetic parameters is induced along the y axis.

Saturation magnetization changes in the range of 300–800
kA/m on the distance 100 nm, with direct contact with
waveguide. Above is smoothly changed in the range of
800–1200 kA/m to avoid sharp edges. Below, a constant
value of 300 kA/m is assumed. On the right-hand side is
the semi-infinite medium, which allows the propagation of
SWs in any direction freely.

Finally, using the knowledge from the previous step,
we design a curved waveguide, which supports coherent
SW propagation alongside the waveguide. To create such
a curved waveguide, we cut the finite two-dimensional
system following the newly created wavefront. The sys-
tem is discretized by Lx × Ly × Lz (2048 × 512 × 1) unit
cells. SWs are excited by an rf magnetic field of frequency
25 GHz applied locally in 6-nm narrow region located at
the distance of 224 nm to the corner from the left side.
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4.3 P3 - Interface modes in planar one-dimensional magnonic
crystals

The paper P3 is a continuation of the studies concerning the magnonic surface/interface
states conducted in the Department of Physics of Nanomaterials[70, 97]. The work started
from a semester project that I prepared on the subject “Transport and topological states in 2D
systems” conducted by prof. Anna Dyrdał. The goal was to calculate the Zak phase[136, 138]
of the spin wave in centrosymmetric crystal from the symmetry criterion[137]. Joshua Zak
demonstrated that it is enough to check the parity of eigenmodes at the edges of a given band
to determine its Berry phase[12]. For the project, I calculated the Zak phase for exchange
spin waves, taking for granted the formula provided by Zak, relying on the fact that one can
draw a full analogy between exchange spin waves and electronic states in crystal.

In our group, we decided to continue the research, and as an ultimate goal, we wanted
to demonstrate bulk-to-edge correspondence that could be used to determine the condition
for the existence of the interface states, localized at the junction of two, semi-infinite, one-
dimensional magnonic crystals.

I started the numerical studies for paper P3 by calculating spin wave spectra of one-
dimensional magnonic crystal in the function of the bulk parameter, i.e., filling fraction, that
is varying from zero to one. In this manner system transit from the uniform film made of one
type of material, through the magnonic crystal to again uniform, but made of the second type
of material. While the bulk parameter is changing, band gaps are closing and opening, and
the Zak phase is changing. We selected two pairs of magnonic crystals with different filling
fractions, and partially overlapping frequency gaps, to observe the interface modes.

Then, we derived the general formula for the Zak phase for the bands of magnonic
crystals. The formula was derived both in exchange and exchange-dipolar regimes. This
allowed us to formulate the existence condition for interface states in 1D planar magnonic
crystals. We could predict in which common frequency gaps the interface modes will be
induced and numerically confirm our theoretical predictions. We extended our consideration
to the case when magnonic crystals are not faced on the high symmetry point, i.e., when the
symmetry criterion for the Zak phase cannot be applied.

In the last part of work P3, we investigated the exchange-dipolar spin waves since such
a system is not a close analog to the electronic system, and can be related to experimen-
tally achievable structures. The system here possesses more complex behavior due to the
sensitivity of dipolar interaction on interfaces. The complexity comes also from the fact
that ferromagnetic resonance frequencies of both constituent materials are different. In the
considered system: (i) the matching of the frequency gaps of two semi-infinite magnonic
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crystals to the same frequency range is more complex; (ii) we can observe both the oscillatory
and the evanescent solution in constituent elements of the structure (i.e., in different strips).
Nevertheless, the numerical calculations confirmed also the theoretical prediction for the
existence of the interface states in the band gap.

In work P3, I performed calculations of spin wave spectra by plane expansion wave
method, determined the Zak phase, prepared graphics, and worked on the manuscript. I was
the corresponding author of this manuscript.
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Interface modes in planar 
one‑dimensional magnonic crystals
Szymon Mieszczak* & Jarosław W. Kłos

We present the concept of Zak phase for spin waves in planar magnonic crystals and discuss the 
existence condition of interface modes localized on the boundary between two magnonic crystals with 
centrosymmetric unit cells. Using the symmetry criterion and analyzing the logarithmic derivative of 
the Bloch function, we study the interface modes and demonstrate the bulk‑to‑edge correspondence. 
Our theoretical results are verified numerically and extended to the case in which one of the magnonic 
crystals has a non‑centrosymmetric unit cells. We show that by shifting the unit cell, the interface 
modes can traverse between the band gap edges. Our work also investigate the role of the dipolar 
interaction, by comparison the systems both with exchange interaction only and combined dipolar‑
exchange interactions.

Band structure is a distinctive feature of wave excitations in periodic structures. Solutions of the wave equations 
in a periodic medium, Bloch waves are characterized by the quasimomentum �k , related to the wavevector k . 
Adiabatic changes of the wavevector in the momentum space lead to the acquisition of a geometrical phase. 
Introduced by M.  Berry1, this phase is related to the topological invariants that distinguish the topological classes 
of the system. For Bloch waves �k(x) propagating in a periodic 2D or 3D medium this role is played by Chern 
 numbers2–4, which are determined for successive bands from the Berry phases calculated along a closed loop in 
the momentum space - i.e., along the edge of 1st Brillouin zone. In a 1D system a loop for the Berry phase can 
be realized by sweeping the wavenumber k across the 1st Brillouin zone (i.e., in the range [−π/a,π/a] , where a 
is the period of the structure). Then, we take advantage of the periodicity of the Bloch function in the reciprocal 
space: �k(x) = �k+2π/a(x) . Referred to as the Zak  phase5,6, this phase characterizes each band of a 1D crystal 
due to the lack of degeneration in 1D systems. The Zak phase can be altered by changing other parameters of the 
system (e.g., by tuning its structural and material parameters) significantly enough to disturb the band structure 
resulting in band gap closing and reopening.

The Zak phase has an ambiguity related to the selection of the unit  cell7. However, for a centrosymmetric 
unit cell it only takes on two well-defined values, which are 0 and π . These values classify the bands in two 
categories and distinguish the types of band  gaps6,8,9. The classification can be based on the symmetry of the 
Bloch functions on the edges of the bands/gaps8,10. This can help establish the criteria for the existence of edge 
or interface  modes8 in terminated periodic structures, where bulk characteristics (symmetry of the bands and 
their Zak phases) correlate with surface parameters determining the existence of edge modes in the band gaps.

Zak phase and edge modes have been the subject of investigation in 1D continuous systems in the form of 
layered media or periodically corrugated waveguides. Various kinds of systems have been studied, including 
photonic  crystals11,12, microwave  systems13,14, plasmonic  crystals15 and phononic  crystals16. It is worthy of notice 
that the definition and interpretation of surface parameters can vary with system. Examples include the rate of 
decay of electron waves outside the crystal (e.g., in  vacuum8), surface impedance for electromagnetic  waves12, 
or pinning parameter for spin  waves17. The Zak phase is measurable  quantity7 and is a powerful tool to predict 
the existence and to describe properties of surface/edge modes.

The studies on spin waves in magnonic  crystals18–20 reported to date, mostly address lattice models based on 
the Heisenberg  Hamiltonian21–23 or the Landau-Lifshitz equation, but discretized in the second-quantization 
approach to the Bogliubov-de Gennes  Hamiltonian24. They strongly indicate the importance of the Dzyaloshin-
skii-Moriya interaction and dipolar interaction for the occurrence of non-zero Chern numbers. A general dis-
cussion of the topological origin of magnetostatic surface spin waves has been provided recently in Refs.25–27. 
Topological concepts can be used to reinterpret those studies of spin-wave defect and edge states in magnonic 
 crystals28–34 which discuss the existence of localized states in terms of symmetry  criteria8.

In this paper we demonstrate that (i) the same standard formula for the Zak phase as used for electronic  states1 
applies to both exchange and exchange-dipolar spin waves in 1D planar magnonic crystals; (ii) in magnonic 
crystals with centrosymmetric unit cell the Zak phase can be determined by a symmetry-related criterion, and 
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the values of the Zak phase for successive bands can be used to investigate the existence of interface states on the 
boundary between two semi-infinite magnonic crystals; (iii) the calculations done for the fictitious model, where 
the dipolar interactions were switched off, shows a close analogy to the electronic system; (iv) the numerical 
calculations performed for a realistic, dipolar-exchange system confirm the theoretical predictions regarding 
the existence of interface spin-wave modes.

Structure and model
Structure. We investigate the spin-waves (SWs) localized on the interface between two one-dimensional 
magnonic crystals (1D MCs). Each 1D MC is built from two kinds of strips, differing in magnetic parameters, 
that are arranged periodically in the plane, being in direct contact with each other. The structure of a single 1D 
MC is schematically presented in Fig. 1a. Such a system can be fabricated by lithographic  techniques35–37, where 
two different materials can be deposited in separate areas, by the ion implantation, where magnetic anisotropy, 
magnetization saturation, or exchange length can be changed in initially homogeneous magnetic  layer38,39, or 
by inducing a thermal gradient that suppress locally the magnetization  saturation40. In our model, we consider 
two sets of parameters corresponding to widely used materials, namely cobalt (Co) and permalloy (Py). The 
properties that are important for SW propagation are saturation magnetization MS and exchange length �ex . 
These parameters are equal to MS,Co = 1445 kA/m, �ex,Co = 4.78 nm, MS,Py = 860 kA/m, �ex,Co = 5.29 nm. We 
assumed that both materials are amorphous, and there is no magnetocrystalline or surface magnetic anisotropy 
in our system. The strips are flat, i.e., their thickness d is much smaller than their width. This assumption allows 
restricting our consideration to the SW fundamental mode, that is not quantized across the thickness. Addi-
tionally, we assume that our sample is saturated by an external magnetic field of the magnitude µ0H0 = 0.2 T 
oriented along the strips. For this magnetic configuration, the static demagnetizing field is equal to zero.

Two semi-infinite 1D MCs are jointed as it is presented in Fig. 1b. They are interfaced on the edges of their 
unit cells. The strips in both MCs are made of the same materials (Py and Co), and have the same period a and 
thickness d. The structures on both sides of the interface differ only by: (i) the filling fractions ff—the ratio 
between the width of Co strip b and the period a ( ff = b/a ) and (ii) the selection of the unit cell—described 
by the parameter δ . In the 1D crystal, the unit cell of the width a can be shifted by arbitrary distance in the 
range �x = [0, a) ( �x = 0 denotes unit cell with the whole Co(Py) strip on the left(right) side of unit cell). This 
selection does not affect the spectrum of infinite crystal (i.e., the band structure of propagating modes) but is 
important for the existence of surface/interface modes in the structures terminated at the edge of the unit cell. 
The parameter δ = �x/a has two distinguished values equal to: δ1 = 1/2− ff /2, δ2 = 1− ff /2 . For these values 
unit cell becomes centrosymmetric. We calculated the Zak phase and logarithmic derivative of Bloch function 
for δ1 , where both 1D MCs have the same type of symmetry, i.e., Co strip is placed in the middle of the unit cell. 

Figure 1.  (a) The geometry of the one-dimensional magnonic crystal. Red dashed lines mark the edges of 
centrosymmetric unit cells of the size a (lattice constant). Yellow and blue colors distinguish the strips made 
of Co and Py of the width: b and a− b , respectively. The strips are thin d ≪ a , and the magnetic field H0 is 
applied along the strips (static demagnetizing effects are absent). In our studies, we changed the width of both 
strips, keeping the lattice constant fixed (see the inset below a). By sweeping the bulk parameter (i.e., the filling 
fraction) ff = b/a in the range [0, 1) , we can tune the SW spectrum between the limits corresponding to the 
uniform layer of Py ( ff = 0 ) and Co ( ff = 1 ). (b) Two semi-infinite magnonic crystals differing in filling 
fractions ( ffL  = ffR ), interfaced at the edges of units cells (solid red line). For the magnonic crystal on the left 
(right) side, we chose a centrosymmetric (non-centrosymmetric) unit cell. The selection of the unit cell does 
not affect the spectrum of the infinite magnonic crystal but is important for the formation of interface states. 
The parameter δ = �x/a = [0, 1) , describing the selection (i.e., the shift) of the unit cell, can then be treated 
as an interface parameter (see the inset below b). The values δ1 , δ2 (and �x1 , �x2 ) correspond to two possible 
selections of centrosymmetric unit cell.
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Please also note that the cells for δ = 0 and δ = 1 are equivalent. In our studies, we are investigating the existence 
of SW modes localized on the interface between two 1D MC in the function of bulk parameter ff  and interface 
parameter δ . One can imagine the system design based on modulation of some other bulk parameter, like value 
of external magnetic  field41,42, thickness  modulation43–45, or interface/surface parameters, like the modifications 
of the structures close to the interface/surface29,31.

Model for magnetization dynamics. We describe the SW modes in 1D MCs using the classical approach, 
based on the Landau-Lifshitz equation (LLE), which is an equation of motion for spatially dependent magnetiza-
tion vector M(r, t) in the effective magnetic field Heff (r, t):

where µ0 = 4π × 10−7H/m is the permeability of vacuum and |γ | = 194.6 GHz/T gyromagnetic ratio. In our 
case Heff  is composed of the following terms:

The symbols: H0 , Hdm(r, t) and Hex(r, t) stand for external field, demagnetizing field and exchange field, 
respectively. The last two terms are both spatially and temporally dependent since they are related to dynamic 
exchange and dynamic  dipolar interaction. The SWs are calculated in linear approximation, where the 
magnetization dynamics can be considered as precession motion around the static magnetic configuration 
M(r) ≈ MSŷ with dynamic component m(r, t) = m(r)eiωt circulating harmonically in time, with the frequency 
ω : M(r, t) = M(r)+m(r)eiωt . We consider only the case where SWs propagate along the direction of periodic-
ity x̂ . Therefore, the SW amplitude m(x) = m�(x)x̂ +m⊥(x)ẑ depends only on x−coordinate only. In linear 
approximation the LLE (1) has a form of the set of two ordinary linear differential equations with periodic 
coefficients (see Supplementary Information, Section 1). Therefore, according to the Floquet’s  theorem46, their 
solutions can be presented as Bloch function mk(x) = uk(x)e

ikx with two complex components mk,‖ , mk,⊥ related 
to in-plane and out-of plane magnetization dynamics, respectively. The symbol k stands for the wavenumber and 
uk(x) = uk,�(x)x̂ + uk,⊥(x)ẑ is periodic component of the Bloch function: uk(x) = uk(x + a).

In this study, we consider SW spectra for two kind of effective field: (i) dipolar interaction are neglected; (ii) 
dipolar interactions are included. In the first case, we assumed that the unit cell has a size equal to a = 100 nm, 
while in the second, a = 1000 nm. In both cases, the thickness d = 20 nm ≪ a and in the model, we assume an 
infinite length of strips that gives us an effectively 1D system.

Interface states. We followed the  work6 to determinate the Zak phase as a topological characteristic of 
every (nth) band of the dispersion relation:

for two 1D MCs which were then joined at the common interface. In supplementary Information, Section 1, we 
present a detailed discussion of the applicability of the formula (3) to SW. The value of the Zak phase depends 
on the selection of the unit  cell7. For the centrosymmetric unit cell, the Zak phase takes two quantized values, 
either 0 or π and can be deduced from symmetry criterion of modes (see Supplementary Information, Section 2 
for details).

The necessary condition to observe the SW modes localized on the interface of two 1D MCs (Fig. 1b) is an 
overlapping some frequency gaps in the spectra of both 1D MCs. This fact ensures the exponential decaying of 
the mode on both sides of the interface, with the rate ±ki . For centrosymmetric unit cell, the logarithmic deriva-
tive is real and has a constant sign within the  gap8 (see Supplementary Information, Section 2). Therefore, the 
matching of the signs of logarithmic derivatives of Bloch function:

on both sides of the interface between two 1D MCs ( x = x0± ) is equivalent to the fulfillment the boundary con-
ditions for mk,α (for each component ( α = {⊥, �} ) . These conditions allow finding the SW interface modes. It 
is worth noting that that we can limit our consideration only to one complex component of the Bloch function 
because mk,⊥/mk,� = Ce−iπ/2 , where C is real and has a constant sign, determined by the direction of precession 
( C = 1 for purely exchange waves).

The relation between the sign of logarithmic derivative ρ in the gap above nth band and Zak phases θm can 
be written for 1D MC of centrosymmetric unit cells  as12 (see Supplementary Information, Section 2):

where m = 1, . . . , n indexes all bands below the gap. The signs ’+’ and ’-’ in the formula (5) refers to two possible 
selection of the complex wavevector in the gap, which describes the mode decaying to the right ( k = kr + iki ) 
and to the left ( k = kr − iki ) in the crystal,  respectively10 ( ki > 0 ). The Eq. (5) relates the topological parameter 
(Zak phases) characterizing the bands of 1D MC(s) with the boundary condition at the interface (expressed by 

(1)∂tM = −µ0|γ |M ×Heff ,

(2)Heff (r, t) = H0(r)+Hdm(r, t)+Hex(r, t).

(3)θn = ℑ
∫ π/a

−π/a

∫ a/2
−a/2 u

∗
n,k · ∂kun,kdx∫ a/2

−a/2 u
∗
n,k · un,kdx

dk,

(4)ρ(k) = ∂x ln
(

mk,α(x)
)
∣

∣

x=x0±
= ∂xmk,α(x)

mk,α(x)

∣

∣

∣

∣

x=x0±
,

(5)sgn(ρ) = ±(−1)n−1 exp

n
∑

m=1

iθm,
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the logarithmic derivative of the SW amplitude). The modes localized on the interface between two 1D MCs 
can (cannot) exist when the signs of logarithmic derivative are the same (different) on both side of the interface 
(see the plots of ρ for both 1D MC in Supplementary Information, Section 2). It means that the expression 
(−1)n−1 exp

∑n
m=1 iθn must have opposite signs on both side of the interface to compensate the change of the 

sign related to different direction of decaying of interface modes for x → ±∞ (i.e., the signs ’±’ at the beginning 
of the formula for sgn(ρ) - see Supplementary Information, Section 2 for details).

The logarithmic derivative taken at the symmetry points of centrosymmetric unit cells has zeros and poles 
only at the edges of frequency gaps and ρ is real inside the gaps (see Supplementary Information, Section 2). It 
means that ρ cannot change its sign inside the gap. Therefore, the agreement of the signs of ρ in common fre-
quency gaps, and eventually the existence of interface modes, depends on qualitative features of both 1D MCs 
spectra. More precisely, depends on the sequences of zeros and poles of ρ at gaps/bands boundaries and its signs 
in successive gaps. We show in the Supplementary Information, Section 2 that mentioned qualitative changes in 
the spectrum can be expresses as a 0 ↔ π flips of Zak phase θ.

It is worth noting that there are always two ways to select the centrosymmetric unit cell (i.e., there are two 
symmetry centers shifted by half of the period �x = a/2 ) which are not equivalent for ρ and θ . When we shift 
the centrosymmetric unit cell by a/2 then θ flips 0 ↔ π in every band and ρ is negated in every second gap (see 
the Supplementary Information, Section 2 for explanations).

The more general case is when the unit cells are not selected as centrosymmetric. Then, the symmetry-related 
criteria for the existence of interface modes cannot be used. However, we can test the continuous transition 
between two different centrosymmetric selections of the unit cell. We investigate numerically how the shift of 
the unit cell �x , described by the parameter δ = �x/a , influences the existence of SW interface modes.We will 
keep the centrosymmetric unit cell for the 1D MC on the left side (see Fig. 1b) and change the selection of the 
unit cell for 1D MC on the right by swapping the parameter δ in the whole range [0, 1). For the gradual change 
of δ , we should observe the continuous transition of the frequencies of the SW interface modes between the 
boundaries of the gap. The SW interface modes for the values δ1 and δ2 correspond to the selection of centrosym-
metric cell for the 1D MC on the right side of the interface. In this case, the observation of interface states must 
be consistent with the symmetry-related existence conditions for these states.

Numerical calculations. The LLE is solved by Plane Wave Method (PWM), which is suitable for periodic 
structures. Detailed discussion of the application of this computational method for planar magnonic crystals is 
presented in the paper by Krawczyk et al.47. Solving LLE with PWM gives us the information of dispersion rela-
tion and SW’s eigenmodes. The bulk properties of SW in single unit cell (infinite 1D MC) are investigated for the 
one-dimensional unit cell with periodic boundary conditions. The calculations are done independence on the 
bulk parameter: filling fraction ( ff ).

To calculate the SW interface modes, we use a supercell  approach48. We mimic two semi-infinite 1D MC, 
joined at the interface, by the supercell composed by finite 1D MC of two kinds, each consisting of N = 100 
unit cells. Inevitable artifact of this approach is existence of second (complementary) interface, due to periodic 
boundary conditions, which can also bound the SW interface modes. Therefore, in our calculation, we will see 
two modes localized on different interfaces. This modes will be degenerated (and will occupy both interfaces at 
the same frequency) for δ = δ1 or δ = δ2 , where unit cells are centrosymmetric and both interfaces are structur-
ally identical.

For the geometry presented in Fig. 1b, the number of unit cells within each 1D MC should diverge to infin-
ity. However, due to computational power limitations, we are constantly forced to perform the computations on 
the finite domain. To reproduce the spectrum of SW interface modes satisfactorily, we must consider the large 
supercell, where the distance between two interfaces is enough to avoid overlapping decaying exponentially 
“tails” of interface modes. For considered structures, this condition is fulfilled even for the smallest gap (char-
acterized by small decay rates ki ) when taking about 100 unit cells of each MCs. Thus the length of each 1D MC 
is D = Na , where N is the number of unit cells and a unit cell’s width. Such systems can be easily investigated 
on a desktop computers.

Results
Firstly, we consider the fictitious planar 1D MC with neglected dipolar interaction. This step allows us later to 
isolate the impact of dipolar interaction on the existence conditions of interface modes. We assumed a small 
lattice constant, a = 100 nm, where dipolar interaction would be negligible anyway. Nevertheless it is impor-
tant to note, that even for small unit cell, system with dipolar interaction would vary in the following aspect: (i) 
dispersion relation is shifted up; (ii) dispersion relation is dependent on the direction of the external magnetic 
field; (iii) for k close to 0 group velocity is nonzero; (iv) for k close to 0 precession of magnetization vector is 
not perfectly circular.

Secondly, we consider the planar 1D MC with included dipolar interaction. To make them meaningful and 
propose a structure that is accessible experimentally, we assumed lattice constant, a = 1000 nm. In Supplemen-
tary Information, we show that the Zak phase for dipolar-exchange system (i.e., the system where the elliptical 
precession must be taken into account) is defined in the same way as for exchange systems. Therefore, the cal-
culation of the Zak phase and logarithmic derivative can be performed in the same manner.

Exchange spin waves. For the system of the small lattice constant a = 100 nm, we neglected the dipolar 
interactions. We start the discussion by analyzing the dependence of the band structure of infinite MC on the 
bulk parameter— ff  . In Fig. 2, the gray and white areas mark the frequency bands and gaps, respectively. For 
exchange spin waves, the gaps in 1D MC are opened alternatively in the center of the 1st Brillouin zone (BZ), 
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i.e., for k = 0 , and edge of the 1st BZ, i.e., for k = π/a (see also Fig.3). These values determine the edges of gaps: 
black dotted line for k = 0 and green dotted line for k = π/a . In the absence of magnetocrystalline anisotropy, 
the lowest black line is independent of the material or structural parameters, including ff  . Its position reflects 
the Larmor frequency and is determined only by the external magnetic field. The edges of higher gaps (i.e., 
located above successive bands n = 1, 2, 3, . . . ) are interwoven and cross each other at specific values of filling 
fraction ff  (see also Fig.3(b)). The values of ff  at which the gaps are closed correspond to the cases when both 
the Co and Py layer contains the integer number of the half-wavelengths. It is equivalent to the appearance of 
standing SWs. The resulting fact is that SW does not scatter on Co|Py interfaces for this particular frequency. 
It is worth noting that for ff = 0 or 1, the system is composed of homogeneous Py or Co where the periodicity 
and the folding of dispersion relation are introduced artificially. The points at which the folded dispersion self-
crosses, mark the frequencies for which the (Bragg) gaps start to open when we introduce thin layers of other 
material. For ff ≈ 0 (for Py matrix with thin Co layer), the gaps are opened at smaller frequencies than the 
corresponding gaps for ff ≈ 1 . Co has larger exchange length of Co, so the slope of its (parabolic) dispersion 
relation increases faster with the wavenumber and the sections of dispersion relations (bands) folded into the 
1st BZ are wider in frequency domain. Therefore, the gaps not only interwove their edge with increasing ff  but 
also push towards higher frequencies. Relatively narrow band gaps make designing the magnonic system with 
neglected dipolar interactions difficult, and proper selection of the system’s properties become crucial.

Due to the reversing of the order of the gap’s edges, the Zak phases (3) of two surrounding bands are flipped, 
and the sign of logarithmic derivative (4) inside the gap is negated. This observation concludes that by adjusting 
the bulk parameters (i.e., filling fractions ff  ) for two 1D MCs joined at the interface, we can adjust the topological 
parameters of their spectra to obtain a common frequency gap. The matching of boundary conditions expressed 
by agreement of logarithmic derivatives of the Bloch functions, exponentially decaying in the interior of cor-
responding 1D MC, can be achieved (see Supplementary Information, Section 2).

In the numerical studies of interface modes, we will also investigate the more general case, when the unit cell 
for one 1D MC is not centrosymmetric and thus it is not interfaced with other 1D MC at its symmetry point.

Interface modes for ffL = 0.4 and ffR = 0.7. Figure 3a–c presents the dispersion relation within the 1st BZ 
for three selected filling fractions ff = 0.4, 0.54, 0.7 . The dispersion branches in Fig. 3a–c are labeled with Zak 
phase, as well as edges of band gaps with the value of the logarithmic derivative ρ (see Supplementary Informa-
tion, Section 2)—the marked values are valid for centrosymmetric unit cell, where δ = δ1 . For the value ff ≈ 0.54 
(Fig.3b), we observe the crossing of second ( n = 2 ) and third ( n = 3 ) band and closing the gap between these 
bands. Due to the band crossing, the Zak phases for n = 2 and n = 3 are flipped, where the change of the symme-
try of the Bloch mode at the bands’ edges are related to the change of Zak phase (modes profiles are presented in 
Supplementary Information, Section 4). Now, when we join two semi-infinite MCs of the filling fractions (with 
centrosymmetric unit cell: δ = δ1 ) ffL = 0.4 < 0.54 and ffR = 0.7 > 0.54 (Fig. 3a, c), then we can agree with 
the sign of the logarithmic derivatives of Bloch function on both sides of the interface in the common frequency 
gap (see Supplementary Information, Section 3). Please note that, for the same sequence of the Zak phases for 

Figure 2.  The evolution of SW spectra in dependence of the bulk parameter: filling fraction ff  for exchange 
dominated 1D MC ( a = 100 nm). White areas represents frequency gaps, while gray regions correspond to the 
successive frequency bands: n = 1, 2, 3 . . . . The edges of the bands: k = 0 and k = π/a are marked by black dots 
and green triangles, respectively. The vertical lines at ff = 0.4, 0.7 and ff = 0.6, 0.8 denote the pairs which were 
interfaced to look for the SW interface modes in common frequency gaps.
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successive bands, the signs of logarithmic derivatives of Bloch functions decaying to the left or right (i.e., for the 
left and right 1D MC, respectively) are opposite in corresponding gaps (i.e., in the gaps between the same bands). 
Therefore, the band crossing is required to negate the sign of logarithmic derivatives sign(ρ) in the reopened gap 
between the crossed bands (see the Supplementary Information 2 and 3 for more explanations) and ensure the 
matching of ρ on both sides of the interface.

Let us confirm the existence of interface states directly. For the two jointed semi-infinite 1D MCs (system 
presented in Fig. 1b), we ran PWM calculation (using the supercell approach) and collected SW spectra for 
wavenumber k = 0 (i.e., for periodic boundary conditions applied to the supercell). The change of parameter δ , 
determining the selection of the unit cell in the 1D MC on the right side of the interface, does not influence on 
the band structure but affect on the geometry of the interface between two 1D MCs. Therefore, by changing δ , 
we influence on the interface modes’ frequency without perturbing the band structure. Results are presented in 
Fig. 3d. Gray strips indicate the frequency ranges where a continuum of states is observed, while white regions 
represent common frequency gaps. Due to narrow gaps, we broke the frequency axis to extend region of band 
gaps. During the evolution of δ , the values: δ = δ1 = 0.15 , δ = δ2 = 0.65 , correspond to the scenario, when right 
1D MC is build of centrosymmetric unit cell (see inset below Fig. 1b).

In the common frequency gaps, we find the pairs of interface modes localized on complementary interfaces 
between both 1D MCs. By blue color are marked states occupying central interface and by red color are marked 
states originating from periodic boundary conditions. For the centrosymmetric cases: δ = δ1, δ2 (marked by 
vertical gray lines), both interfaces are equivalent, and the interface states are degenerated and localized on both 
interfaces at once. By changing the δ we can tune the frequency of interface modes and traverse the whole range 
of the frequency gap. For the whole range of δ = [0, 1) (note that δ = 0 is equivalent to δ = 1 ) the interface mode 
traverse the gap even few time, depending on the number of the decaying oscillation of Bloch function in the 
unit cell. These numbers increases for successive gaps.

It is worth noting that by the gradual changes of δ , we are continuously transiting between two different selec-
tion of centrosymmetric unit cell for the 1D MC on the right side of the interface (corresponding to δ1 and δ2 ). 
Such change will result in the flipping of the Zak phase for each band ( 0 ↔ π ) and the negation of logarithmic 
derivative of Bloch function in every second gap, i.e., for the gaps opened at the edges of1st BZ. This effect allows 
relating the (non)existence of interface modes for the cases: δ = δ1 and δ = δ2

6,8 (see Supplementary Information, 
Section 2). The gap around 7.5 GHz (presented in Fig.3d) is opened at edge of the 1st BZ (between the bands 
n = 1 and n = 2 ), so the interface modes can exist either for δ = δ1 or δ = δ2—we observe here only for δ = δ2 . 

Figure 3.  (a–c) Closing and reopening of the frequency gap (above the 2nd band, in the center of 1st Brillouin 
zone: k = 0 ) with the changes of filling fraction ff  for exchange waves. The successive dispersion relations 
were plotted when the gap is (a) opened, ffL = 0.4 , (b) just closed, ff = 0.54 , and (c) opened again, ffR = 0.7 . 
The labels: 0 and π stand for the Zak phases of the bands, 0 and ∞ (red color) - for logarithmic derivative on 
the edges of band gaps. The values of Zak phases and logarithmic derivatives were determined for the case 
δ = δ1 (i.e., for Co strip in the center of the unit cell). The SW interface modes localized on the interface of two 
1D MCs of ffL = 0.4 and ffR = 0.7 . (d) The spectrum in the function of the surface parameter δ , defining the 
selection of the unit cells for 1D MC on the right. The values δ1 and δ2 correspond to the centrosymmetric unit 
cell with Co and Py strip in the middle. The calculations were performed for supercell approximation, where 
we considered the final sections of the 1D MCs, each of the size D = Na and composed of N = 100 unit cells. 
Due to the application of periodic boundary conditions, we obtain an additional interface between 1D MCs. 
The frequency of interface mode localized in the center x = x0 (on edge x = x0 ± D ) of a supercell is marked 
by a blue dotted (orange dotted) line. (e, f) The profiles of the SW interface modes in the gaps above 1st and 2nd 
bands. The frequency and δ positions, for which modes are calculated, are indicated by arrows. The interfaces 
x = x0 and x = x0 ± D are pointed by blue dashed and orange dashed lines, respectivelly. For centrosymmetric 
case, the mode occupy both interface (e), while for non-centrosymmetric only one (f).
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Whereas, the gap just above 11 GHz (Fig.3d) is opened at the center of the 1st BZ (between the bands n = 2 and 
n = 3 ), which means that the existence conditions of interface modes are the same in both cases ( δ = δ1 , δ = δ2
)—here we observe that they exist for both selections of centrosymmetric unit cell.

Interface modes for ffL = 0.6 and ffR = 0.8. The interface modes can also be found when we select different 
values of filling fractions for 1D MCs on the left and right side of the interface: ffL = 0.6 and ffR = 0.8 (Fig. 4a 
and c, respectively). For the intermediate value of the filling fraction ff = 0.71 (Fig. 4b), we observe the crossing 
of the gap’s edges between third ( n = 3 ) and forth ( n = 4 ) band—see Fig. 2. The crossing of the bands allows 
matching the signs of the logarithmic derivatives in the third gap on both sides of the interface between two 
MCs (see also Supplementary Information, Section 2). However in Fig. 4c we can notice that Zak phase of third 
( n = 3 ) and forth ( n = 4 ) band is 0. The reason for this is the additional swap of the Zak phase between the 
fourth and fifth band gap that is visible in Fig. 2. Regarding the Eq. (5), the sign of the logarithmic derivative is 
determined by the Zak phases of all bands below it, so the Zak phase of the band over the gap is irrelevant. The 
values of the logarithmic derivative at the edges of the gaps and the Zak phases superimposed on Fig. 4a–c was 
determined for centrosymmetric unit cell, i.e., for δ = δ1—see also Fig. 2 in Supplementary Information, where 
the Zak phase was determined from the profiles of the Bloch functions at the edges of the bands.

The results of the SW spectra calculations ( k = 0 ) of supercell with two jointed 1D MCs for ffL = 0.6 and 
ffR = 0.8 are presented in Fig. 4d–g. Figure 4d shows the SW spectra in the function of δ . In the considered fre-
quency range, we can see three band gaps between the bands n = 1, 2, 3, 4 . The interface states traverse between 
the edges of gaps, and the number of times increase with the number of band gaps. Similarly to the previous 
case ( ffL = 0.4 , ffR = 0.7 ), the interface modes appear in pairs and are localized in the middle of the supercell 
(Fig. 4g), at the edge of supercell (Fig. 4f) or at both locations (Fig. 4e)—due to degeneracy. The spatial oscillation 
of the interface modes are not visible because of the large number unit cells of each 1D MC ( N = 100 ) within 
the supercell. The inset in top part of Fig. 4g shows the zoomed profile of interface mode in the vicinity of the 
interface. The modes has one oscillations per unit cell, therefore logarithmic derivative flips its sign once. As a 
results, this mode traverses once across the gap in the whole range of δ.

Figure 4.  (a–c) Closing and reopening of the frequency gap (above the 1st band, at the edge of 1st Brillouin 
zone: k = ±π/a ) with the changes of filling fraction ff  for exchange waves. The successive dispersion relations 
were plotted when the gap is (a) opened, ffL = 0.6 , (b) just closed, ff = 0.71 , and (c) opened again, ffR = 0.8 . 
The values 0 and π are the Zak phases of the bands, 0 and ∞ (red color) stand for logarithmic derivative on the 
edges of band gaps. The values of Zak phases and logarithmic derivatives were determined for the case δ = δ1 
(i.e., for Co strip in the center of the unit cell). The SW interface modes localized on the interface of two MCs of 
ffL = 0.6 and ffR = 0.8 . (d) The SW spectrum in the function of the surface parameter δ , defining the selection 
of the unit cells for 1D MC on the right. (e–g) The profiles of the SW interface modes in the gaps above 1st, 
2nd and 3rd bands. We use the same conventions to mark the frequencies and localization of the SW interface 
modes as in Fig. 3e, f. Inset above (g) presents a close-up of the SW profile near the interface. It can be seen that 
despite the fact of decaying, the character of the mode is oscillating.
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We can analyze the existence of interface modes for two centrosymmetric cases δ = δ1 and δ = δ2 in similar 
way as for the structure ffL = 0.4 and ffR = 0.7 . The gaps around 7.5 and 18.5 GHz open at the edge of the 1st 
BZ, therefore the interface state can be observed only for one selection of centrosymmetric unit cell. For the gap 
opened around 11.5 GHz, the absence of interface modes for δ = δ1 implies the nonexistence of these states at 
δ = δ2.

Dipolar‑exchange spin waves. Let us now present the results for the system with included dipolar inter-
actions. To observe the impact of dipolar interactions, we expanded the sizes of the system. The lattice constant 
is now larger by one order of magnitude: a = 1000 nm, referring to discussed case with exchange waves. Like in 
the previous section, we start from the analysis of SW spectra. Its dependence on the filling fraction ff  is pre-
sented in Fig. 5. The first observation is that the fundamental mode is sensitive to magnetic parameters, contrary 
to spectrum with active only exchange interactions. The bottom of the 1st band ( k = 0 ) is strongly dependent 
on ff  . Starting from ff = 0 , the frequency slowly increases from 14 GHz, while around ff = 0.8 it rises quickly, 
reaching ultimately about 17.5 GHz for ff = 1 . The frequencies of the lowest SW modes (for k = 0 ) are just the 
frequencies of the ferromagnetic resonance (FMR), which is expressed as f = |γ |µ0

2π

√
H0(H0 +MS) for homo-

geneous layer of Py ( ff = 0 ) or Co ( ff = 1 ), differing significantly in saturation magnetization MS,Py < MS,Co . 
Therefore, the FMR frequency increases with the increase of filling fraction: 0 < ff < 1 . We marked the FMR 
frequencies of uniform Py and Co films by dashed lines.

The frequencies for other edges of the bands/gaps quickly increase with the ff  too. However, their interweav-
ing is not observed for low values of ff  and low frequencies. It can be understood when we notice that the band 
crossing in 1D bi-component magnonic crystal requires the oscillatory solution in both components (strips, 
layers). In our system, the evanescent waves exist in Co strips for the frequencies below the FMR frequency of 
uniform Co. Additionally, due to confinement effect the frequencies of oscillatory modes in Co are increased 
for smaller ff  where the Co strips are narrow. Therefore, to find the interface states, we selected a pair of MCs 
of relatively high filling fractions ff  : 0.6|0.9 for which the edges of gaps can have different number of crossing 
points, that is related to different topological properties of their band structures.

The dispersion relations for these 1D MCs are presented in Fig. 6a, b. For reference, we showed the disper-
sion relations of the uniform film made of Co and Py in the range of ( −π/a , π/a ). They are marked with dashed 
lines. Thanks to this comparison, we can attribute the first branch of MC in Fig. 6a as excitation in Py, while 
the fifth in Co. In Fig. 6b, the first branch of 1D MC is an excitation in Py, while the third one is an excitation in 
Co. The character of SW’s profile is implicitly presented in Supplementary Information, Section 4. These bands 
are shifted up with respect to fundamental excitation in the uniform film due to the confinement and dipolar 
pinning in the  strips49. The SW is forced to be quantized within the strip, and due to this, its frequency increase. 
For ff = 0.9 and the Py strip, this effect is the most significant because the Py strip is the narrowest—it has there 
only 100 nm. For ffR = 0.9 , two first bands have a minimum at the center of BZ, and a maximum at the edge of 
BZ. It violates the typical scenario when the maximum and minimum of two successive bands appear at the same 
position in BZ, i.e., the case when we observe only the direct gaps. This peculiarity of the system can be explained 
when we notice that the second band is not a result of folding the first band into the 1st BZ, but is related to the 

Figure 5.  The evolution of dipolar-exchange SW spectra in dependence on the bulk parameter: filling fraction 
ff  ( a = 1000 nm). The vertical lines at ff = 0.6, 0.9 denote the pair of 1D MCs, that were interfaced. We used 
the same convention to mark frequency bands, gaps and their edges as in Fig. 2. The higher (lower) horizontal 
dashed line marks the FMR frequency for uniform Co (Py) layer.
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lowest oscillatory solution in the Co strips. In the first band, we observe in Co the evanescent excitation forced 
by the magnetization dynamics in Py. This consideration is supported by spatial profiles of the modes presented 
in Supplementary Information, Section 4. It is worth noting that the lowest mode in Co can be also identified by 
the non-zero group velocity, characteristic of dipolar dynamical coupling in the limit k → 0.

The spectrum of considered 1D MC’s is very rich and is dramatically modified with the change of the filling 
fraction—the bands’ positions and their separations (width of the gaps) vary significantly with ff  . Unlike the 
system with exchange interaction only, the positions of corresponding band gaps (i.e., the band of the same index 
n) are different. For example, the first band gap for ffR = 0.9 is located in the frequency range corresponding to 
second and third band gaps for ffL = 0.6 . The bands are relatively narrow which proves that we are operating in 
crossover dipolar-exchange regime. The flat dispersion branches in Fig. 6a–c means the low value of the group 
velocity for SW.

In Fig. 6a, b, we marked the Zak phases for centrosymmetric unit cells ( δ = δ1 ). The values were determined 
by the inspection of the profiles of the Bloch functions at the edges of the bands (see Fig. 2e, f in Supplementary 
Information). The sequences of Zak phases allows determining the sign of logarithmic derivatives of Bloch 
function, ρ , in frequency gaps for MCs at left and right side of the interface. The values of ρ at edges of bands 
are marked in Fig. 6a, b with red color.

The careful inspection of the sign of ρ in common frequency gaps of both MCs (marked as white areas in 
Fig. 6a, b) allows indicating three common gaps in which the signs of ρ are opposite: gap below 1st band, gap 
around 18.5 GHz and tiny gap, slightly above 21 GHz. In these gaps, we did not find numerically any interface 
modes: Figure 6c does not present solution at these frequencies for δ = δ1 . Concluding, analysis of logarithmic 
derivative for dipolar-exchange waves is also valid tool to describe the existence criteria for interface modes.

This system posses some peculiarities. Due to disturbing the typical sequence of dispersion branches, loga-
rithmic derivative can take the same values on the edges of band gaps. For ffR = 0.9 first band gap ρ is equal to 0 
on both of the edges, and in second gap is equal to −∞ . We were also not able to plot the logarithmic derivatives 
of Bloch functions, as we did for exchange waves in Supplementary Information, Section 2. It is related to the 

Figure 6.  (a, b) The dipolar-exchange SW dispersion relations for two MCs which differ only in filing fractions: 
(a) ffL = 0.6 , (b) ffR = 0.9 . The spectrum for ff = 0.9 is shifted up in the frequency scale due to dipolar 
interaction, and the successive gaps in both spectra do not match each other. The forbidden ranges for interfaced 
MCs ( ffL = 0.6 and ffR = 0.9 ) can originate from overlapping of various frequency gaps in both 1D MCs—see 
Fig. 5. The values: 0 and π are the Zak phases of the bands, whereas: 0 and ∞ (red color) stand for logarithmic 
derivatives on the edges of bad gaps. Dashed lines represent dispersion relation for a uniform system made 
from Py (branch starts at 14GHz) and made from Co (branch starts at 17.5 GHz). (c) The dipolar-exchange 
SW interface modes localized on the interface of two 1D MCs of ffL = 0.6 and ffR = 0.9 . The spectrum of SW 
interface modes is shown in dependence on the surface parameter δ . We use the same conventions to mark the 
frequencies and localization of the SW interface modes as in Fig. 3d. The gray dashed line denotes δ = 1− ff  
where the Py|Co interface is on the left edge of the unit cell. (d–f) The profiles of the SW interface modes in 
common (from both 1D MCs) forbidden frequency ranges. The close-up at the x = x0 is presented above (f). 
The SWs decay exponentially in Co strips and have one oscillation per Py strip.
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difficulties with the determination of the complex wavenumber in the indirect gaps, needed to be specified to 
run the PWM calculations.

For selected pair of the filling fractions ( ffL = 0.6 , ffR = 0.9 ) of two 1D MCs, we performed the numerical 
studies of the modes localized at interface between 1D MCs. Using the PWM and supercell approach, we calcu-
lated the frequencies and profiles of interface modes localized on two complementary interfaces. The frequen-
cies were plotted in dependence on the parameter δ which describes the selection of the unit cell in the MC on 
the right side of the interface. Figure 6d presents the evolution of interface states in the function of δ . The first 
observation is that the dependencies of the frequencies of interface modes on the unit cell shift δ can change their 
slopes abruptly. This effect is related to the sensitivity of dipolar interaction on the interfaces. With an increasing 
value of δ , the narrow Py strip ( ff = 0.9 ) moves into the center of the unit cell (see the inset below Fig. 1b for 
graphical illustration). Till the δ reach the value marked by the gray dashed line δ = 1− ff  , the Py strip on the 
interface is widening. After that, the Co strip starts to be located on the interface, so the MC on the left starts to 
be interfaced with different material on the right side.

The another interesting finding is the absence of multiple traverses of the interface modes across the common 
gap for the swap of parameter δ , observed for small frequencies (below 19.5 GHz, where the modes start spatially 
oscillate in Co) and for the larger values of the δ ( 1− ff < δ < 1 , where the left edge of the unit cell of the right 
MC appears in Co strip). In this range of the δ , the solution at the edge of unit cell (which is the right side on 
interface between 1D MCs, as well) cannot change the sign. It is because of the evanescent profile of the mode 
in Co. This excludes multiple flips of the sign of the mode at the interface while δ is changed.

Figure 6d–f shows the profile of the interface states for selected values of δ and frequency. They are strongly 
localized on the interface. Inset above (d) presents a close-up of the interface region. The oscillatory character 
is only in the Py strips, while in Co, the amplitude decay exponentially. The strong localization is a consequence 
of wide gaps in which the imaginary parts of wavevector (describing the exponential rate of localization) can 
reach large values.

Summary
We have presented a comprehensive study on the existence of interface SW states in 1D planar magnonic crys-
tals, using a continuous model of magnetization dynamics for the exchange and dipolar-exchange spin waves.

We have related bulk parameter in magnonic crystal to the symmetry-related conditions of existence of inter-
face states: (i) the concept of Zak phase, which is a topological characteristic of individual bands in the frequency 
spectrum was connected to (ii) the logarithmic derivative of the Bloch function on both sides of the interface, 
expressing the boundary conditions for interface modes in the band gaps. We have also performed numerical 
results that allowed us to consider the behavior of the interface modes for non-centrosymmetric unit cells. We 
have shown that this degree of freedom can be used to induce or vanish the interface state in desired band gap.

Full analogy to the already investigated electronic and photonic systems is observed in the magnonic system 
where the dipolar interactions are neglected. For the dipolar-exchange waves, however, the analysis becomes 
more complex. We have observed new effects specific to dipolar interaction: (i) rarer crossings of band gap 
edges—the band gaps do not close in a wide range of the filling fraction and the selection of pair of MCs with 
band structures supporting interface modes is challenging; (ii) in the lower-frequency range (i.e., in lower band 
gaps) the observed interface modes do not traverse the band gap edges with shifting MC unit cell. Nevertheless, 
we have found numerous interface modes, and their existence (for centrosymmetric unit cell) was determined 
from the symmetry criterion of the Bloch function on the band edges.

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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ABSTRACT

We present the concept of Zak phase for spin waves in planar magnonic crystals and discuss the existence condition of
interface modes localized on the boundary between two magnonic crystals with centrosymmetric unit cells. Using the symmetry
criterion and analyzing the logarithmic derivative of the Bloch function, we study the interface modes and demonstrate the
bulk-to-edge correspondence. Our theoretical results are verified numerically and extended to the case in which one of the
magnonic crystals has a non-centrosymmetric unit cells. We show that by shifting the unit cell, the interface modes can traverse
between the band gap edges. Our work also investigate the role of the dipolar interaction, by comparison the systems both
with exchange interaction only and combined dipolar-exchange interactions.

1 Zak phase for spin waves in planar magnonic crystals
Exchange spin waves
The linearized Landau-Lifshitz-Gilbert equation can be written in the following form when the dipolar interactions are neglected
HHHdm = 0:

{
∂tm‖ (x, t) = |γ|µ0

(
L̂(x)m⊥ (x, t)−V m⊥(x, t)

)

∂tm⊥ (x, t) = |γ|µ0
(
−L̂(x)m‖ (x, t)+V m‖(x, t)

)
,

(1)

where the function V (x) and operator L̂(x) are defined as:
{

V (x) =
(
∂xλ 2∂xMS(x)

)
+H0 ≈ H0

L̂(x) = MS(x)∂xλ 2(x)∂x
(2)

and λ is exchange length. We neglect the static term ∂xλ 2∂xMS(x) because it is nonzero only at the interface between strips
and can be neglected in numerical computations1. To find the eigenmodes, we are considering the harmonic dynamics in
time: mmm(x, t) = mmm(x)eiωt . The equation (1) is a Sturm-Liouville problem, can be written in the form analogous to Schrödinger
equation:

∂t |m〉= Λ |m〉 , (3)

where we used the notation |m〉 := [m‖(x),m⊥(x)]T eiωt and the matrix Λ is defined as following:

Λ = |γ|µ0

(
0 −V + L̂

V − L̂ 0

)
. (4)

Let us consider the continuous transition of the vector |m〉 in the momentum space of the wavenumber k, after which it
acquires the phase ϕ(t):

∣∣m′
〉
= eiϕ |m〉 . (5)

Eq. (3) is satisfied for |m′〉 as well. We can write the following relation resulting from (3):
〈
m
∣∣∂t
∣∣m′
〉
=
〈
m
∣∣Λ
∣∣m′
〉
, (6)

1
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where we defined the inner product 〈 f1 | f2〉 :=
∫ a/2
−a/2

(
f ∗1,‖(x) f2,‖(x)+ f ∗1,⊥(x) f2,⊥(x)

)
dx. By differentiating |m′〉 in time and

using the identity: ∂k = k̇∂t , we can write (6) in the form:

iϕ̇ 〈m|m〉+ 〈m|∂k|m〉 k̇ = iω 〈m|m〉 . (7)

Taking into account that |u〉= |m〉e−ikxe−iωt , we obtain form (7):

ϕ =
∫ t

o
ω (t)dt

︸ ︷︷ ︸
ϕt

+
∫ k(t)

k(0)

i〈u|∂k|u〉
〈u|u〉 dk

︸ ︷︷ ︸
ϕg

. (8)

The phase ϕ contains an additional term ϕg which is distinguishable from the phase ϕt acquired from the temporal evolution
of the eigenmode |m〉. The geometrical phase ϕg collected when Bloch function |m〉 passes the periodic path in the space of
k-number (i.e., when k is real and ranges from -π/a to π/a) is called Zak phase θ :

θ =
∫ π/a

−π/a

ℑ〈u|∂k|u〉
〈u|u〉 dk. (9)

Dipolar-exchange spin waves
The demagnetizing field HHHdm(x,z, t) =−∇ϕ(x,z, t) is calculated under magnetostatic approximation by finding the magneto-
static potential ϕ(x,z, t) from the Gauss equation. For the layer which is periodically modulated in the plane, the demagnetizing
field was calculated using the method proposed by J. Kaczer2, which is based on the Fourier expansion. For thin planar structure,
the demagnetizing field does not change significantly inside the magnetic layer and we took its value in the middle of the layer
(z = 0) as a representative for the whole cross-section of the layer. The dynamic demagnetizing field is expressed in terms of
the coefficients of the Fourier expansion of the Bloch function |m〉, therefore the Eq. (3) must be written in the Fourier space as
well:

∂t |m̃〉= Λ̃ |m̃〉 (10)

where |m̃〉 := [u‖,G0 , . . . ,u‖,Gn , . . . ,u⊥,G0 , . . . ,u⊥,Gn , . . .]
T eikxeiωt with u‖,Gi , u⊥,Gi being the Fourier coefficients, and matrix Λ̃

taking a form:

Λ̃ = |γ|µ0

(
0 −Ṽ + L̃+ D̃‖,⊥

Ṽ − L̃− D̃⊥,‖ 0

)
. (11)

The matrices L̃ and Ṽ are related to (2) and describe the impact of external field and exchange interactions, respectively. The
matrices D̃⊥,‖ and D̃‖,⊥ describe the dynamic dipolar interactions in 1D planar magnonic crystal1, 2 – the difference between
them is reflected in the ellipticity of pressecion of dipolar spin waves. The explicit form of these matrices is:

L̃i, j = −∑
l
(k+Gi)(k+Gl)λ 2

Gl−G j
MS,Gi−Gl ,

Ṽi, j = H0δi, j,

D̃⊥,‖,i, j = −
(

1− e−|k+G j |d/2
)

MS,Gi−G j ,

D̃‖,⊥i, j = −e−|k+G j |d/2MS,Gi−G j , (12)

where d is the thickness of the layer. The material parameters, i.e., saturation magnetization MS(x), exchange length λ (x) and
the components of Bloch function: m‖(x), m⊥(x) are expanded into Fourier series:

MS(x) = ∑
n=0

MS,GneiGnx,

λ (x) = ∑
n=0

λGie
iGnx,

m‖(⊥)(x) = ∑
n=0

u‖(⊥),Gnei(Gn+k)x. (13)

The set {Gn}= 0,±2π/a,±4π/a, . . . ,±n2π/a, . . . denotes the reciprocal lattice numbers.
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To prove that the formula (9) also applies to dipolar-exchange spin waves, we need to show that 〈u|∂k|u〉= 〈ũ|∂k|ũ〉 and
〈u|u〉= 〈ũ|ũ〉, where |ũ〉= |m̃〉e−ikxe−iωt :

〈u|∂k|u〉=
∫ a/2

−a/2

(
u∗‖(x)∂ku‖(x)+u∗⊥(x)∂ku⊥(x)

)
dx =

∑
i, j

∫ a/2

−a/2
ei(Gi−G j)xdx

︸ ︷︷ ︸
δi, j

(
u∗‖,Gi

∂ku‖,G j +u∗⊥,Gi
∂ku⊥,G j

)
= ∑

i

(
u∗‖,Gi

∂ku‖,Gi +u∗⊥,Gi
∂ku⊥,Gi

)
=: 〈ũ|∂k|ũ〉 . (14)

The relation 〈u|u〉 = 〈ũ|ũ〉 can be proven in the same way. Starting from (10), we can then show that the Zak phase for
dipolar-exchange spin waves is also equal:

θ =
∫ π/a

−π/a

ℑ〈ũ|∂k|ũ〉
〈ũ|ũ〉 dk =

∫ π/a

−π/a

ℑ〈u|∂k|u〉
〈u|u〉 dk. (15)

In (13, 14) we omitted the indexing of u‖(⊥)(x) and their Fourier coefficients u‖(⊥),Gn by the band number and did not marked
their dependence on the wavenumber k.

2 Zak phase and logarithmic derivative for the crystal with centrosymmetric unit cells
For 1D crystal the Bloch function at k = 0 or k =±π/a is periodic (mmm(x+a) = mmm(x)) or anti-periodic (mmm(x+a) =−mmm(x)),
respectively. Moreover, for the crystals with centrosymmetric unit cells, the Bloch function are even (mmm(xs + x) = mmm(xs− x)⇒
∂xmmm = 0|x=xs

) or odd (mmm(xs + x) =−mmm(xs− x)⇒ mmm = 0|x=xs
) function, with respect to each of two symmetry centers xs = na

or xs = a/2+na, and can be normalized to be real-valued. This gives four possible type of bands, by considering the (even or
odd) symmetry of the Bloch function on each of two edges of the band. It is worth noting, that the symmetry of Bloch function
is the same at both symmetry centers (xs = 0+na and xs = a/2+na) only for k = 0 whereas it is reversed (from even to odd or
from odd to even) when we change the symmetry point, for k = π/a. Therefore, it is better to use Wannier functions, defined
as:

aaa(x−na) =
√

a
2π

∫ π/a

−π/a
mmmk(x)e−iknadk, (16)

to classify the symmetry of the bands3, 4. The Wannier functions characterize whole band (do not depend on the wavenumber
k). For the case of crystal of centrosymmetric unit cells, they are exponentially localized around one of symmetry centers
(xc = 0 and xc = a/2), and are either even or odd with respect to this symmetry center. The periodicity (and anti-periodicity)
and symmetry of the Bloch function at k = 0 (k = π/a) can be strictly connected to the properties of the Wannier functions by
the relation:

mmmk(x) =
√

a
2π

∞

∑
n=−∞

aaa(x−na)eikna, (17)

which can be used to express the Zak phase in terms of Wannier functions. Assuming that the Bloch functions are normalized
〈m|m〉= 2π/a⇔ 〈a|a〉= 2π/a, we can obtain from (15) and (17):

θ =
2π
a

∫ π/a

−π/a
i〈u|∂k|u〉dk

=
∫ a/2

−a/2

( ∞

∑
n,n′=−∞

(x−na)aaa∗(x−n′a) ·aaa(x−na)
∫ π/a

−π/a
eik(n−n′)adk

︸ ︷︷ ︸
2π/aδn,n′

)
dx

=
2π
a

∫ ∞

−∞
x|aaa(x)|2dx =

2π
a

∫ ∞

−∞
x(|a‖(x)|2 + |a⊥(x)|2)dx, (18)

where a‖(x) and a⊥(x) denote the components of Wannier function corresponding to in-plane and out-of-plane components of
Bloch function. For the system with centrosymmetric unit cells, the integral θ = 2π

a
∫ ∞
−∞ x|aaa(x)|2dx takes only two possible

values 0 and π which correspond to different symmetry center: (xc = 0 or xc = a/2) at which the Wannier function, related to
given band, is localized. This allows spliting all band to two disjoint topological classes where the Zak phase θ is equal to 0
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or π . Please note that in general case, i.e., when the unit cells are not centrosymmetric then the Zak phase can take arbitrary
value. To prove the quantized values of Zak phase for centrosymmetric unit cell, we need to discuss the symmetry of function
x|aaa(x)|2. This function is odd when xc = 0, regardless if aaa(x) is even or odd, which gives θ = 0. For xc = a/2, we need make a
substitution x→ x+a/2 for the variable inside the integral. Then, we can find that the expression can be split into two terms:
(x+a/2)|aaa(x+a/2)|2 = x|aaa(x+a/2)|2 +a/2|aaa(x+a/2)|2, where the first one is odd and second one is even and does not
vanish after integration, which gives θ = π . The above discussion relates the symmetry of the Bloch function on the edges of
the band to the Zak phase for this band in the structures with centrosymmetric unit cells. If the symmetry of Bloch function,
respect to the center of unit cell, is the same on both edges of the band then the Zak phase for this band is equal to 0, otherwise
to π . As we noticed at beginning of Section 2, the centering of the unit cell at alternative symmetry center xs (i.e., shifting it by
a/2) changes the symmetry of the Bloch function on one edge of the band only, i.e., for the edge at which k = π/a. As a result
the shift of the centrosymmetric unit cell by the half of the period: xs→ xs +a/2 flips the Zak phase for each band: θ → θ +π .

ffL
ffR=0.8

=0.6ffL
ffR=0.7

=0.4

(a) (b)

Figure 1. Logarithmic derivative calculated numerically from eq. (19). The lines (dashed for f f = 0.4, solid for f f = 0.7) are
monotonically goes between 0 and infinity within the band gap. The crossing point for left and right magnonic crystals (MCs)
point out the frequency value of the interface state. Here, the interface state appears only in the second band gap. Logarithmic
derivative calculated numerically from eq. (19). The lines (dashed for f f = 0.6, solid for f f = 0.8) are monotonically goes
between 0 and infinity within the band gap. The crossing point for left and right MCs point out the frequency value of the
interface state. Here, the interface state appears only in the third band gap.

For the crystal with centrosymmetric unit cells, the properties of the Bloch function on the edges of bands are decisive
for the sign of the logarithmic derivative of Bloch functions inside the gaps and thus determine the conditions of existence
for surface/interface modes. According to the work of J. Zak5: (i) the logarithmic derivative ρ(k), taken in symmetry points
xs = na or xs = a/2+na, is real and has a constant sign in the whole range of the frequency gap, whereas in the band ρ(k)
is purely imaginary; (ii) the sign of ρ(k) in two successive gaps is different (the same) if ρ(k) reaches two zeros or two
poles (one zero and one pole) at the edges of the band between the gaps. The zeros and poles of ρ(k) at the edges of bands
correspond to mmmk|x=x0

= 0 and ∂xmmmk|x=x0
= 0, which means the odd and even Bloch functions at symmetry point corresponding

to the edge of unit cell, respectively; (iii) the sign of ρ is conserved (negated) in the direct gaps which is opened at kr = 0
(kr = π/a), in the center of the BZ; (iv) the change of the side of interface x0+ → x0− and the direction of decaying of the
mode from x→ ∞ to x→−∞ (when we switch from the MC on the right to the MC on the left) requires the change of the
sign of imaginary part of the wavevector from −ki to ki, that results in the change of the sign of the logarithmic derivative:
ρ(kr + iki)|x=x0+

=− ρ(kr− iki)|x=x0−
. The properties (i), (ii) and conclusions highlighted at the end of the previous paragraph

allow us to formulate the following statement. When the Zak phase for a given band is equal 0 (π) then the signs of logarithmic
derivatives of Bloch function in gaps surrounding this band are the same (are opposite).

The knowledge of the Zak phases for all bands below a given gap allows determining the sign of the logarithmic derivative
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of Bloch function ρ(k) in this gap. To justify this formula, let us start with the discussion concerning the sign of ρ(k) below the
lowest band n = 1. For the frequencies below the 1st band, the Bloch function has a form of evanescent wave (|ki|> 0) with
homogeneous phase (kr = 0) and without the oscillations within the unit cells. Therefore, it decays monotonously to the left
x→−∞ (ki > 0) or to the right x→ ∞ (ki > 0) and its logarithmic derivative is positive or negative, respectively. This property
is included by the sign ± in the formula which links the sign of ρ(k) in the gap with the sequence of Zak phases for the bands
below it (Eq.(5) in the manuscript). When all bands are characterized by the Zak phase θ = 0, the logarithmic derivative of
Bloch function ρ flips its sign from the gap to the gap. Therefore, in the gap just above nth band, it will be equal to ±(−1)m.
The number of flips of the sign will be reduced if some bands with the Zak phase θ = π appear below the selected gap. If the
odd (even) number of such bands exit, then the sign ±(−1)m will (will not) be reversed. This potential reversal of the sign can
be described by adding factor ∏n

m=1 exp(iθm) = exp∑n
m=1(iθm), where the expression exp(iθm) is equal to +1 or −1, if θm = 0

or π , respectively.

3 Calculations of the logarithmic derivative of Bloch function using the PWM
Using the Fourier expansion of the Bloch function (13), we can strictly calculate the derivative ∂xm‖(⊥) and write the logarithmic
derivative of Bloch function in the form:

ρ(x) = i
∑i(k+Gi)u‖(⊥),k,Gi exp(iGix)

∑n u‖(⊥),k,Gi exp(iGix)
. (19)

4 The exemplary SWs’ profiles on the edges of the frequency bands

For the centrosymmetric unit cell, the Zak phase θn of each nth band of the 1D crystal can be determined only by inspection
of the Bloch functions’ symmetry mk,‖(⊥),n (x) in the symmetry point of the 1st Brillouin zone: k = 0 or k = ±π/a, where
a is a period of 1D lattice. The Zak phase of the nth band is 0 if either

∣∣mn,k=0 (x = x0)
∣∣ =

∣∣mn,k=π/a (x = x0)
∣∣ = 0 or∣∣∂xmn,k=0 (x = x0)

∣∣=
∣∣∂xmn,k=π/a (x = x0)

∣∣= 0, where x0 denotes the center of the unit cell. Otherwise, it is π6.
Figs. 2(a, b) presents the profiles of modes for four the lowest bands for the pair of f f = 0.4 and 0.7 (up and down,

respectively) and Fig. 2(c, d) –for 0.6, 0.8, and Fig. 2(e, f) for the system with included dipolar interaction: f f =0.6 and 0.9.
Black lines marks the profiles for k = 0, and green lines – for k = π/a. Light blue and yellow colors denotes the regions in
which the Py and Co strips are placed, respectively (see Fig. 1 in the manuscript). The Zak phase can be deduced by analyzing
symmetry of the profiles and the edges of each band, i.e., for k = 0 and k = π/a.
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Figure 2. The SW’s profiles |m⊥| within the unit cell at the edges of BZ. Black line is calculated for k = 0, green line for
k = π/a. The values of the SW profiles and their derivatives allow determining the Zak phase for the band. (a) Results for
f f = 0.4. For n = 1, n = 2 and n = 4 modes have different derivatives in the middle of unit cells, that suggest value of Zak
phase equal to π . For n = 3 Zak phase is equal to 0. (b) Results for f f = 0.7. For n = 1 and n = 3 Zak phase is equal π , and
for n = 2 and n = 4 Zak phase is equal 0. (c) Results for f f = 0.6. For n = 1 and n = 3 Zak phase equal to π . For n = 2 and
n = 4 Zak phase is equal to 0. (d) Results for f f = 0.8. Only for n = 1 Zak phase is equal π , everywhere else is equal to 0. For
exchange-dipolar waves, 8 SW’s profiles are presented. (e) Results for f f = 0.6. For n = 1, n = 2, n = 3, n = 4, n = 5, n = 8
Zak phase is equal to π , everywhere else is equal to 0. (f) Results for f f = 0.9. For n = 1, n = 3, n = 7 Zak phase is equal to π ,
everywhere else is equal to 0.
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4.4 P4 - Spin-wave localization on phasonic defects in one-
dimensional magnonic quasicrystal

This work, P4 was inspired by the discussion with Dr. Radosław Strzałka[130], from AGH
University of Science and Technology in Kraków, during the conference 45. Zjazd Fizyków
Polskich. Dr. Strzałka works theoretically on phasons in quasicrystals. He drew our attention
to the enhanced susceptibility of narrower frequency gaps for closing due to the presence
of defects in the structure of quasicrystals. Numerical studies presented in the paper were
the continuation of the research on quasicrystals conducted in the Department of Physics
of Nanomaterials at Adam Mickiewicz University in Poznań by Dr. Justyna Rychły[99],
during her PhD-studies. Her pioneering works demonstrate fractal spectra of the integrated
density of states (IDOS) and critically localized modes[79, 80]. We formulated a scientific
objective asking ourselves what could be the role of disorder introduced into the quasiperiodic
magnonic system. The role of disorder is not widely investigated in magnonics, especially
in quasicrystals, so we thought that addressing this question is legit. Mentioned features
of magnonic quasicrystals seemed to be especially interesting in the light of introducing
defects because defects in the system lead to the appearance of mode localization, while
the fine structure of IDOS gives the possibility to investigate the evolution of frequency
gaps out of many frequencies and widths. To introduce structural defects, we applied the
concept of uncorrelated phasonic defects. By increasing the number of such defects, we can
gradually transit from the unperturbed Fibonacci quasicrystal to random rearrangement of
the constituents elements decorating the initial Fibonacci lattice.

Although phasons are dynamic quasiparticles in quasicrystals, in this research, they are
considered static, and we use this concept only to define the method of introducing defects.
The Fibonacci lattice can be generated by the so-called "cut&projection" method, and the
phasonic defects can be interpreted as the modulations of a line that cut the square lattice
embedded in fictitious two-dimensional hyperspace. The Fibonacci sequence of length Fn

has Fn different realization (aka phasons), related to the structural degree of freedom, that
corresponds to the shift of the cut line. If the amplitude of modulation at a given lattice
point is high enough, an element from a neighboring sequence can be picked up, leading
to a phasonic defect. The amplitude of modulation determines the strength of the disorder
because more phasonic defects are probable in the system.

Presentation of results in the work P4 starts from the comparison of the IDOS between
ideal Fibonacci sequence and defected systems at different ranges of disorder. It can be
noticed how the fine spectrum that is the hallmark of the magnonic quasicrystal is degrading
under disorder. The impact on the smaller gap is strong, and even relatively small disorders in
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the structure lead to closing the gaps. This is also reflected in the Bragg peaks, where smaller
ones diminish more than bigger ones, with increasing levels of disorder. In the next step, the
paper presents the aggregated results in the form of a histogram where the different realization
of disorder is generated under the same level of disorder. This step allows for discussion of
which peculiarities come from the phasonic defects. While small gaps close very fast, the
bigger ones are more robust to the disorder. Additional states merge on the edges, leading to
the destruction of the van Hove singularities, and additional modes appear well inside the
gap. Increasing the level of disorder leads to a stronger impact on IDOS, and the modes’
frequencies disperse over a wider range, penetrating the frequency gaps of undefected system.
Under the defects, some modes migrate in the frequency domain, however, a measure of
localization reveals the fact that all the modes are disturbed. The last part of the paper is a
discussion on the mode evolution of several selected modes. The quasicrystal is self-similar,
so there are many patterns that can be found repetitively across the structure. This behavior
leads to the appearance of an additional type of modes that are unique for quasicrystals,
namely critically localized states. Thus modes in magnonic quasicrystal can be grouped into
two categories: bulk and critically localized. It is particularly interesting to track how each
of them behaves under disorder in the system. In several examples, it is shown, how modes
change the profile from bulk to critically localized, or from critically localized to localized
on the defect.

In work P4, I performed calculations of spin wave spectra by plane wave expansion
method, prepared graphics, and worked on the manuscript. I was the corresponding author.
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Spin-wave localization on phasonic defects in a one-dimensional magnonic quasicrystal
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We report on the evolution of the spin-wave spectrum under structural disorder introduced intentionally into
a one-dimensional magnonic quasicrystal. We study theoretically a system composed of ferromagnetic strips
arranged in a Fibonacci sequence. We considered several stages of disorder in the form of phasonic defects,
where different rearrangements of strips are introduced. By transition from the quasiperiodic order towards
disorder, we show a gradual degradation of spin-wave fractal spectra and closing of the frequency gaps. In
particular, the phasonic defects lead to the disappearance of the van Hove singularities at the frequency gap
edges by moving modes into the frequency gaps and creating new modes inside the frequency gaps. These
modes disperse and eventually can close the gap, with increasing disorder levels. The work reveals how the
presence of disorder modifies the intrinsic spin-wave localization existing in undefected magnonic quasicrystals.
The paper contributes to the knowledge of magnonic Fibonacci quasicrystals and opens the way to study of the
phasonic defects in two-dimensional magnonic quasicrystals.

DOI: 10.1103/PhysRevB.106.064430

I. INTRODUCTION

Quasicrystals are aperiodic structures characterized by
long-range order and lack of translational symmetry [1,2].
The order can be revealed in the Fourier spectrum of the
structure that has a countable set of Fourier components [3–6].
This property leads to the presence of multiple frequency
gaps (i.e., Bragg gaps) in the spectrum of eigenmodes. The
disorder introduced into the structure generally leads to the
localization of the eigenmodes. The increasing level of disor-
der eventually leads to Anderson localization [7–10] and the
gradual closing of the Bragg gaps. Particularly interesting is
the case of defects in quasicrystals because they possess fine
band structures and already localized modes that are called
critically localized. In this sense, the impact of the disorder
can be more complex.

Due to the structural degrees of freedom in quasicrystals,
the local arrangement of the structure cannot unambigu-
ously determine the global ordering and the identification
of disorder is more difficult than for periodic structures.
The concept of structural degrees of freedom is more un-
derstandable when we notice that the quasicrystals can be
generated from the higher-dimensional crystals defined in ab-
stract higher-dimensional hyperspace or real space but by the
cut-and-projection (C&P) method [3].

The most known one-dimensional (1D) quasicrystal whose
lattice can be generated by the C&P method is the Fi-
bonacci quasicrystal, where lattice points, separated by long
(L = aτ/

√
2 + τ ) and short (S = a/

√
2 + τ ) distances, are

arranged aperiodically (a denotes the period of square lattice
in hyperspace, τ is the golden ratio) [11]. The translation of
the Fibonacci lattice is equivalent to rearrangements/swaps

*szymon.mieszczak@amu.edu.pl

within the pairs of neighboring sites, which leads to the ex-
change of the adjacent short and long distances: LS ↔ SL.
These local rearrangements of the lattice are called pha-
sons [12]. The C&P method suggests also how to generate
the positional disorder in the Fibonacci lattice manifested only
by the perturbation of the sequence of L and S. It can be
achieved by the modulation of the shift c of the projection line
y = τ−1x + c(x)—see Appendix A for more details. If this
randomly introduced modulation is long wave and has small
amplitude, then it generates the LS ↔ SL swaps. Such kind of
structural disorder is called phasonic defects.

The phasons (and phasonic defects) are the unique fea-
ture of all quasicrystals and were intensively investigated
in relation to the stability of the atomic lattice of natural
quasicrystals and their phononic properties [13]. In these sys-
tems, phasons are dynamic objects which can be activated
thermally and move diffusely [10,14,15] in the structure of a
quasicrystal. The concept of phasons was already investigated
in photonics including the diffusive character of phasons [16].
Their role was also discussed as static defects, deliberately
introduced into the photonic quasicrystals [17].

In the paper we focus on the general problem of proper
introduction of positional disorder in magnonic quasicrystals
and study the impact of such phasonic defects on the spin-
wave spectra and their localization properties in magnonic
Fibonacci quasicrystals [18,19]. We introduce the static and
spatially uncorrelated phasonic defects, which allow for grad-
ual transition from the nondefected Fibonacci sequence of
strips to the completely disordered system. The static char-
acter of considered phasonic defects means that they are
introduced intentionally (i.e., by design) and not sponta-
neously (i.e., by thermal activation).

The impact of the disorder on magnetization dynamics
was extensively studied in the lattice models [20–23]. In
the case of the continuous model, the impact of the isolated

2469-9950/2022/106(6)/064430(10) 064430-1 ©2022 American Physical Society
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defect on the spin-wave spectrum in magnonic crystals was
investigated for 1D structures [24–26], two-dimensional (2D)
magnonic crystals [27–29], and line defects in 2D magnonic
crystals [30]. There were also reports on defect as a magneti-
zation reversal of a single strip in a one-dimensional magnonic
crystal [31]. However, a disorder in magnonic quasicrystals
raises another class of questions, thus, we believe that our
study on phasonic defects and their impact on the spin waves
makes a valuable contribution to the magnonics field of re-
search.

In Sec. II we present the magnonic structure under inves-
tigation, explaining (i) why this structure can be considered
as a decorated Fibonacci lattice and (ii) how we introduce
the uncorrelated phasonic defects. In this section we also
outline the computational method based on the solution of
the Landau-Lifshitz equation by the plane wave method. In
Sec. III we provide a detailed analysis of the impact of the
phasonic defect on the frequency spectra of SWs and local-
ization of the modes, illustrated by the plots of the integrated
density of states, localization measure, and the profiles of
selected modes. Finally, in Sec. IV we conclude our findings.

II. STRUCTURE AND MODEL

We investigate spin waves (SWs) in a 1D planar magnonic
structure composed of cobalt (Co) and permalloy (Py) strips
of equal widths, being in direct contact and thus forming
a continuous layer. The Co and Py strips are magnetically
saturated by the external field applied along with them. The
strips are arranged in a Fibonacci quasicrystal. It is worth
noting that despite the equal width of the strips, the system
can be understood as a decorated Fibonacci lattice where
Co and Py strips are centered at sequences SLLS and SLS
sharing the shorter sections S between Co and Py with the
ratio (2 − τ )/(2 + τ ). Then, the common width of Co and Py
strips is equal to a( 3

2τ + 1)/
√

τ + 2.
To generate the phasonic defects as the structural perturba-

tions, we use the procedure which is technically simpler than
the C&P method (discussed in Appendix A), although it is
based on a more complex formalism (describing the proper-
ties of the generalized Harper model with incommensurate
modulation of the on-diagonal and off-diagonal elements of
tight-binding Hamiltonian [32]). The general model, which
also describes the Fibonacci quasicrystal, is presented in
Ref. [32]. The authors provide the characteristic equation that
determines the successive elements of the Fibonacci sequence
for given values of the parameter φ, describing the structural
degree of freedom [33,34]:

χn(φ) = sgn

[
cos

(
2πn

τ
+ φ

)
− cos

(π

τ

)]
. (1)

The characteristic function χn takes the values ±1. For our
structure, χn = 1 (χn = −1) selects Py (Co) strip at nth po-
sition in the Fibonacci sequence. The parameter φ is related
to the shift c of the line y = τ−1x + c in the C&P method:
φ = 2πc/a, see Fig. 9 in Appendix A. For infinite range of
the index n, the different values of φ correspond to different
realizations of the Fibonacci crystals which are only shifted by
ñ positions with respect to each other: χn(φ) = χn+ñ(φ + φ̃),
for every n (the change φ̃ of the parameter φ corresponds

7 12 131

7 12 131

(a)

(b)

(c)

FIG. 1. (a) All possible approximates of a Fibonacci crystal com-
posed of 21 elements. As the phase φ changes [see Eq. (1)], we obtain
21 possible sequences of Co (light yellow) and Py (dark blue)—note
that Co strips can appear in doublets. The solid red line at φ = π/τ

corresponds to the approximate generated by standard substitution
rules: Co → Co|Py, Py → Co, presented in (b)—see also Fig. 2. The
red dashed lines show the range in which the parameter φ is randomly
changed at each position n. The changes of φ which induces the
phasonic defects are marked by green bars. They are responsible for
the substitution Py → Co at position 7 and swap between positions
12 and 13 (Co|Py → Py|Co). A sequence with defects is presented
in (c); note that position of swaps are marked by arrows.

to the shift of the sequence by ñ positions). When n takes
values in the finite range 1, . . . , N , where N is the Fibonacci
number, then the sweep of the parameter φ in the range [0, 2π ]
produces all unique, N-element sequences which can be iden-
tified as the Fibonacci crystal. The number of such unique
approximates of the Fibonacci crystal is equal to N . It is
illustrated in Fig. 1(a) where we presented all 21 approximates
composed of 21 elements (strips). Please note that the charac-
teristic function Eq. (1) is periodic: χn(φ) = χn(φ + 2π ), and
the parameter φ plays a role of phase in Eq. (1).

We arbitrarily selected the structure represented by φ =
π/τ because this approximate is generated by the standard
substitution rules. The phasonic defects can be introduced to
any sequence generated by Eq. (1), because each of them is a
defectless section of the Fibonacci quasicrystal. The approx-
imate for φ = π/τ [red solid line in Fig. 1(a)] is presented
schematically in Fig. 1(b) and a corresponding structure is
visualized in Fig. 2.

To introduce the phasonic defects we add an additional
term φn to the parameter φ: φ → φ + φ̃ + φn [33,34]. This
term is a random number of uniform distribution in the range
−�φ < φn < �φ, where �φ < π . The range �φ can be
understood as a counterpart of thermodynamic temperature
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H0

Py Py Py Py Py Py Py PyCo Co Co Co Co Co Co CoCoCoCoCoCo

FIG. 2. The approximate of a Fibonacci quasicrystal correspond-
ing to the φ = π/τ (see Fig. 1), i.e., resulting from the standard
substitution rules: Co → Co|Py, Py → Co. This exemplary structure
is composed of Py and Co flat strips (30 nm thick and 300 nm
wide), aligned side-by-side and being in direct contact. The field
μ0H0 = 0.1 T is applied along the strips. The sequence of tilted
arrows and line in front of them visualizes the spin-wave mode
profile.

in atomistic quasicrystals, where higher temperature leads to
higher probability of defect occurrence. This range is marked
by the red dashed lines in Fig. 1(a) and the exemplary sample
of the random values of φn are denoted by thin vertical bars.
The perturbations φn which induce the phasonic defects (i.e.,
flip the sign of χn) are marked by the green line (positions
n = 7, 12, 13). The ineffective perturbations are marked by
red bars. The perturbed structures with three phasonic de-
fects are shown in Fig. 1(c). Positions of phasonic defects
are marked by arrows below the figure. The defects are not
correlated in space because for each position χn is generated
independently. Thus, the parameter φn does not change grad-
ually, in a wavelike manner, as it is expected for a long wave
(and long-living) phasons in atomic quasicrystals at finite tem-
perature [13,14]. Because of it, along with swaps LS ↔ SL,
we can also observe the substitutions L ↔ S. For �φ = π the
system becomes random, since the probability of a type of
strip at nth position is τ . We discuss this case in Appendix B.
For smaller values of the amplitude �φ, the introduction of
defect is not equally probable at every position. At some
locations (e.g., position 13 in Fig. 1) the generation of the
defect is highly probable, whereas other locations can be quite
robust (e.g., position 7), or even completely inaccessible (e.g.,
position 2) for defects [35].

Each strip is assumed to have a width of 300 nm, a thick-
ness of 30 nm, and is infinitely long. The dimensions make the
system in an exchange-dipolar regime, which is already feasi-
ble for experimental realization. For the constituent elements
from which the system is constructed, we consider two widely
used materials, namely Co and Py. The parameters that are
important for SW propagation are magnetization saturation
MS and the exchange length λex. These parameters are equal to
MS,Co = 1445 kA/m, λex,Co = 4.78 nm, MS,Py = 860 kA/m,
and λex,Py = 5.29 nm. We assume that our sample is saturated
by the external magnetic field with value μ0H0 = 0.1 T, and
is directed along the strips. In this geometry a static demagne-
tizing field is equal to zero.

We consider a magnonic quasicrystal that is composed
of two different magnetic materials [36,37]. However, the
magnetic contrast can also be obtained in other ways: By
inducing local anisotropy [38,39], by decorating the uniform
film [40,41], or by thermal gradient [42]. Having said that, the

physics that we present in the paper is not restricted to the
bicomponent material.

When we neglect the damping, the dynamics of the mag-
netization vector can be described by the Landau-Lifshitz
equation (LLE):

∂M
∂t

= −μ0|γ |M × Heff , (2)

where μ0 = 4π × 10−7 H/m is the permeability of vacuum
and γ = 176 rad GHz/T is the gyromagnetic ratio. The ef-
fective magnetic field, which contains all kinds of magnetic
interactions considered in our study, governs the precession
of the magnetization vector. In our case Heff is composed of
the following terms:

Heff (r, t ) = H0 + Hdm(r, t ) + Hex(r, t ), (3)

where H0 stands for the external field, Hdm(r, t ) is the de-
magnetizing field, and Hex(r, t ) is the exchange field. The last
two terms are spatially and temporally dependent since they
are connected with material parameters and magnetization
dynamics at the same time. SWs are usually studied at room
temperatures T . Considered materials have much higher Curie
temperatures TC , e.g., TC ≈ 1400 K for cobalt. In the regime
T � 3/4TC , thermal effects can be neglected, and the usage of
the LLE is fully justified [43].

We use the plane wave method (PWM) to solve the lin-
earized LLE [44], where the magnetization vector M(r, t )
can be decomposed into static part M0(r) and dynamic
m(r)ei2π f t , changing harmonically with the frequency f .
The dynamic part contains two components of magnetiza-
tion vector: min(r, t ) and mout(r, t ), representing in-plane and
out-of-plane oscillation, respectively. The PWM method is
designed for a periodic system, where the Bloch boundary
condition must be used. The PWM is based on the application
of the Fourier transform both to the Bloch functions (dynamic
components of magnetization) and material parameters (satu-
ration magnetization and exchange length). These procedures
allow us to formulate an algebraic eigenproblem which can be
solved numerically with the eigenvalues (being eigenfrequen-
cies) and eigenvectors (being the Fourier coefficients of the
Bloch functions).

Despite the fact that the quasicrystals are not periodic
structures, the PWM can still be used in the so-called super-
cell approach [45]. This application of PWM still assumes
periodicity, but for supercells being copies of the whole sys-
tem, for which we take the periodic boundary condition. In
magnonics, this approach was already used to investigate
defect modes [24], interface modes [46], waveguides [47],
and two-dimensional quasicrystals [48,49]. For the considered
system, the supercells are composed of 377 strips. For such
large supercells the peculiarities of the Fibonacci quasicrystal
are well reproduced, and spurious interface states (which can
appear at the edges of supercells) do not disturb the spectra.
We used 3770 plane waves for expansion into the Fourier
series. This amount was checked for convergence and was
enough to reproduce the Fibonacci spectra [19].
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FIG. 3. Top row: (a), (b), and (c) Integrated density of states as a function of frequency plotted in the inverse form f (IDOS) (blue/green
color), and the dispersion relation for SWs in a homogeneous film with weight averaged material parameters (black color). Please note
that IDOS and dispersion relation has their own abscissa, and shares a common ordinate. The abscissa of each plot has the same scale,
indicated only in the leftmost plot. (a) Results obtained for a perfect Fibonacci sequence composed of 377 strips. (b) Results obtained for a
defected sequence with amplitude �φ/(2π ) = 5% and (c) �φ/(2π ) = 10%. Bottom row: (d), (e), and (f) Bar plot of reciprocal lattice vector
intensities, corresponding to the Bragg peaks, for the structures from (a), (b), and (c), respectively. Phasonic defects destroy the fine structure
of Bragg peaks that in consequence lead to modification of the density of states at the edges of frequency gaps and creates new modes inside
the gaps.

III. RESULTS AND DISCUSSION

To determine the spectral properties of the approximates
of the Fibonacci quasicrystal, we plotted the dependence of
integrated density of states (IDOS) on the frequency. For
a finite system, IDOS( f ) is the number of modes below a
given frequency f , see Refs. [19,48,50]. For the successive
approximates of a 1D crystal or quasicrystal (i.e., taking larger
unit cell), the IDOS is a steplike function where the steps
become finer with the increasing size of the approximates.
Constant frequency ranges in the IDOS( f ) corresponds to the
frequency gap of the system for k = 0. The width of these
ranges converges with larger approximates. The other feature
allowing the identification of the frequency gaps is a specific
character of IDOS( f ) close to the gap’s edges. The changes
of the frequencies for successive modes (i.e., with increasing
IDOS) become extremely small in the vicinity of the gap,
which is the manifestation of van Hove singularities in the
density of states for 1D nondefected systems [51,52]. It is
worth noting that, due to the lack of translational symmetry
in quasicrystals, we cannot easily relate the frequency f to the
wave number k. However, it was shown that for a 1D infinite
system, the IDOS( f ) ∝ k( f ) [53]. Therefore, the IDOS( f )
dependence for large approximates give us insight into the
dispersion relation f (k), see Figs. 3(a)–3(c).

The f (IDOS), i.e., inverse function of IDOS( f ), for a non-
defected approximate (composed of 377 strips) is presented
in Fig. 3(a). The solid black line in Figs. 3(a)–3(c) shows the
dispersion relation f (k) for an infinite uniform thin film [54].
Please note the split of the x axis between IDOS and the
wave number. The film was assumed to have effective material
parameters, which are the volume averages of the constituent
material parameters of Co and Py. It is clearly seen that the
f (IDOS) follows the dispersion relation f (k). The agreement
is very good for long SWs, in the so-called metamaterial
regime (k → 0). In this case, SWs are not that sensitive to
a specific configuration of strips. Significant differences are
observed when frequency gaps are opened, which does not ap-
pear in the homogeneous film. Just before and after frequency
gaps, differences between the frequencies of successive states
are very small, and bars in the graph [Fig. 3(a)] form the hori-
zontal lines, which corresponds to the van Hove singularities.

Figures 3(b) and 3(c) show f (IDOS) in the presence of
phasonic defects. We used green color for IDOS to visually
differentiate results from the nondefected case in Fig. 3(a).
We consider two levels of phasonic defects corresponding to
different ranges �φ of the random component of the param-
eter φ, which describes the structural degree of freedom [see,
Eq. (1) and Fig. 1]. We assume the values �φ/(2π ) = 5%
[Fig. 3(b)] and 10% [Fig. 3(c)]. Due to phasonic defects, the
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FIG. 4. Top row: (a), (b), and (c) Integrated density of states as a function of frequency plotted in the inverse form f (IDOS) calculated
for the Fibonacci sequence with introduced defects. Gray areas represents the frequency gaps in an ideal Fibonacci sequence. The amplitude
of phasonic defects �φ/(2π ) are (a) 5%, (b) 10%, and (c) 25%. A histogram of integrated density of states (IDOS) is obtained from 100
configurations of differently introduced defects. Intensity of the green color reflects how often a given position is occupied by an SW mode.
Bottom row: (d), (e), and (f) Localization measure λi as a function of frequency for an SW in a 1D Fibonacci sequence with phasonic
defects. The values of λi are calculated for structures with (d) 5%, (e) 10%, and (f) 25% of defects. Every plot aggregates 100 different system
configurations. λi increases significantly even if a small amount of defects is introduced (d), and consequently increases with amount of defects
(e) and (f).

narrowest gaps are closed, and new modes strongly localized
at defects (see the discussion later in the paper) are induced
[see the red dashed frames in Figs. 3(b) and 3(c), showing the
states within the frequency gaps]. The narrower gaps are much
more susceptible to disappearing with increasing disorder.

In the bottom row of Figs. 3(d)–3(f) we present a Fourier
spectra of the structures considered in Figs. 3(a)–3(c). Forma-
tion of the frequency gaps can be attributed to the fulfillment
of the Bragg condition, i.e., the position of the Bragg peak
(multiplied by two) determines the position of frequency
gaps [55]. However, their intensity does not necessarily de-
termine the width of the frequency gap. We can see in the
unperturbed Fibonacci structure [see Figs. 3(a) and 3(d)] that
the biggest peak (except for a peak at k = 0) is responsible
for the widest frequency gap (12.3–14.3 GHz), however the
second biggest peak opens only a small one, around 15 GHz.
We can see that the Bragg peaks are reduced as the level
of phasonic defect increases. The relative reduction of the
highest peaks (corresponding to wider gaps) is smaller than
for lower peaks (corresponding to narrower gaps). Therefore,

only the highest peaks in the Fourier spectrum are distinguish-
able, and the widest gaps remain opened for a large level of
phasonic defects—see the bottom part of Fig. 3(c) and the
zoomed region, marked by the red dashed frame. Another
effect of the phasonic defects in IDOS is the change of the
slope of f (IDOS) at the edges of frequency gaps. This means
that density of states is not singular anymore at these points.

Figures 3(a)–3(c) show that the f (IDOS) is a useful func-
tion for description of the spectral properties of defected
quasicrystals. However, the spectra presented in Figs. 3(b)
and 3(c) are specific for a given, randomly generated, set of
phasonic defects. To obtain the representative picture, we need
to collect the spectra for many configurations of phasonic de-
fects generated for the same amplitude �φ. Figures 4(a)–4(c)
present the IDOS for 100 different configurations aggregated
on one plot in the form of a 2D histogram. Please note that
figures in two rows of Fig. 4 share the same values of fre-
quency on the horizontal axis. The intensity of the green
color reflects which position in frequency and IDOS appear
more often. Figures 4(a)–4(c) are plotted for �φ/(2π ) =
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5%, 10%, and 25%, respectively. The gray background marks
the frequency gaps of the nondefected Fibonacci sequence.
The general trend of IDOS in the function of frequency pre-
vails even for the most disturbed system. The IDOS curve
is not much dispersed, suggesting the same spectra for the
different realizations of the disorder. However, we can notice
that the green line in Fig. 4(c) is thicker than in Fig. 4(a),
which indicates some frequency shift under strong disorder.
In the range of frequency 10–12 GHz, where IDOS resembles
the dispersion relation of the homogeneous film with weight
averaged material parameters [black line in Figs. 3(a)–3(c)],
defects do not change the picture. The impact of the defects is
strongest around the frequency gaps. Initially, for �φ/(2π ) =
5% the modes appear deeply inside and at the edges of the
gaps. Then, for higher �φ, the modes start occupying other
frequencies within the gaps and gradually fill them. These
effects are more effective for narrower gaps. Finally, we do not
observe the fine structure of the gaps in the spectrum which
was a hallmark of quasiperiodicity. The location of the defect
in the sequence and its neighborhood determines the fre-
quency of strongly localized defect modes. For �φ/(2π ) =
5% [Fig. 4(a)] modes from the widest frequency gaps (i.e.,
the gap around 13 or 16 GHz) are induced by those phasonic
defects which form the sequence of double Py strips. Thus,
their position on IDOS is very specific. Moreover, since such
sequence of strips is common in the defected sequence, the
modes are highly degenerated. For a more distorted sequence
presented in Figs. 4(b) and 4(c), different sequences become
available like triple Py strips, so defect states can occupy other
frequencies.

The qualitative determination of localization is challenging
because the profiles of the SW modes can be localized in many
regions, so the rate of spatial decay cannot be determined
unambiguously. Therefore, we decided to introduce the global
measure of localization λi that is calculated for each ith SW
mode mi(x):

λi = − 1

L

∫ L

0
|mi,out (x)| log |mi,out (x)|dx, (4)

where L denotes the width of the whole sequence. For com-
putational simplicity we considered only the out-of-plane
component mi,out (x) of the dynamic part of magnetization
mi(x). During the calculations, the profiles are normalized:
1
L

∫ L
0 |mi,out (x)|dx = 1. The formulation of this measure is

done with the analogy to the Shannon information en-
tropy [56,57], where the SW profile plays a role of probability
distribution—the uniform distribution (and Dirac delta dis-
tribution) corresponds to the highest entropy and complete
absence of localization: λi = 0 (the lowest entropy and maxi-
mum localization: λi = −∞).

In Figs. 4(d)–4(f) we present the localization measure λi

for successive modes, calculated on the same data set as IDOS
calculation. They are ordered with increasing frequency, sim-
ilarly to the IDOS spectrum. We can see that localization
is significantly enhanced as the amplitude of the phasonic
defects is increasing [green 2D histogram in Figs. 4(d)–4(f)],
especially if we compare it to the case of the nondefected
system [blue points in Figs. 4(d)–4(f)]. We can identify the
strongly localized defect modes with a large value of |λi|

(a)

(b) mode 9, 10.57 GHz

mode 9, 10.67 GHz
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FIG. 5. The evolution of the bulk mode under the presence of
the defects. (a) In the absence of defects the mode is not local-
ized, its amplitude is more concentrated in Py than in Co. (b) For
�φ/(2π ) = 10% the defects (marked by arrows below the plot) lead
to the formation of double Py strips and can concentrate the SW
dynamics.

inside the frequency gap. It is worth noting that the local-
ization of the modes at frequencies close to the edges of
gaps with enhanced λi suggests that some of the critically
localized modes [58–61] become defect modes. To inspect
the localization of the SW modes directly, we plotted the
profiles of selected modes. We chose one of the configurations
for �φ = 10% that corresponds to an intermediate disorder
level, presented in Figs. 4(b) and 4(e). All the modes are
normalized to the maximum absolute value in the whole struc-
ture. Figures present only fragments of them, and the location
can be deduced from strip numbers. All modes, which were
selected for plotting, are also marked in the spectra [Figs. 3(a)
and 3(c)]. We start the analysis by checking the impact of
the disorder on the bulk modes. Figure 5 presents the com-
parison of one mode, labeled No. 9 at 10.67 and 10.57 GHz
in nondefected and defected structures, respectively. Looking
at Fig. 4(e) suggests significant modification of the profile.
The envelope in Fig. 5(a) is not localized and the mode has
several nodal points (one of them is visible close to strip No.
120). The visible nonuniformity of amplitude is related to
the oscillatory and evanescent behavior in Py and Co strips,
respectively, thus SW amplitude is concentrated in Py strips.
Figure 5(b) presents mode No. 9 after introducing the defects,
where double Py strips are formed. SW is localized on the
defects, around the strips No. 90 and No. 110 that have a
similar local arrangement.

In nondefected Fibonacci quasicrystals, the critically local-
ized modes exist close to the edges of the gaps—see mode
No. 136 at 12.57 GHz in Fig. 6(a) and its frequency marked
in Fig. 3(c). The profile of this mode exhibits the pattern with
amplitude concentrated on parts of the structure possessing
locally the same arrangement of strips. For very large struc-
tures, these modes can reveal a self-similar pattern [58,61].
By adding the defects, we can shift critically localized modes
to the frequency gap. Then, their frequencies are changed
significantly, and the profiles are extremely strongly localized
at defects, see Fig. 6(b). The SW in Fig. 6(b) is localized in
double Py, and since such defects occur several times within
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FIG. 6. The transition of the mode No. 136 from critically lo-
calized at the edge of the frequency gap to strongly localized in the
frequency gap induced by phasonic defects. The critically localized
mode (a) enters into the gap and (b) becomes strongly localized, due
to the presence of defects �φ/(2π ) = 10% which is accompanied
by a significant change in frequency from 12.57 to 13.29 GHz.

the considered structure, the mode can occupy different de-
fects leading to multiple degenerations.

The bulk modes can also increase their localization due to
partial confinement between the defects. Figure 7(a) presents
the critically localized mode No. 359 at 16.96 GHz, which
has an enhanced amplitude on the sequences Co|Co|Py|Co
(or on their reversed copies Co|Py|Co|Co). After introducing
the defects, the mode amplitude is redistributed among these
strips, which leads to the partial confinement of this mode
between the defects, see Fig. 7(b).

The most typical kind of localization, existing in both
periodic and quasiperiodic structures, is an exponential local-
ization on defects, which are observed within the frequency
gaps. We selected two wide gaps, around the frequency 13.5
or 16 GHz (Figs. 3 and 4), to investigate the profiles of defect
modes. The selected modes (shown in Fig. 8) are localized
at the defects, which have the form of double Py strips. We
arbitrary chose the modes with one phase flip inside the single
defect [Figs. 8(a) and 8(b)], and three phase’s flips inside the
defect [Figs. 8(c) and 8(d)]. The defect modes are located at a
single or few positions in the structure. Due to strong localiza-
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FIG. 7. (a) The critically localized mode (No. 359 at 16.96 GHz)
which increases its localization and slightly changes its frequency
to f = 16.92 GHz due to partial confinement between defects (b) at
�φ/(2π ) = 10%.

mode 135, 13.28 GHz(a)

(b) mode 138, 13.29 GHz

mode 291, 16.03 GHz

mode 292, 16.03 GHz
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FIG. 8. The defect modes from the two largest frequency gaps
shown in Figs. 3 and 4. (a) and (b) Modes No. 135 and No. 138 with
frequency 13.28 and 13.29 GHz. (c) and (d) Modes No. 291 and No.
292 with frequency 16.03 GHz. The modes are strongly localized
at one of few locations but have the same profile, differing only
in phase (flipped upside down) [see (a) and (b)] or reversed along
with the structure (flipped left-right) [see (c) and (d)]. Due to strong
localization, the modes are practically degenerated. The results are
shown for the structure with �φ/(2π ) = 10%.

tion and low probability of overlapping between the profiles
concentrated at selected defects, the modes are degenerated—
there are many modes of very similar frequencies occupying
similar sequences in different locations of the quasicrystal.
We discussed earlier the position-dependent susceptibility for
inducing the defects, where we showed that some locations in
the structure are very resistant or even completely robust to
the introduction of defects at the low value of the amplitude
�φ [35]. This is an additional factor supporting the isolation
of the SW dynamics at defects and contributing to the nonuni-
form distribution of the frequencies for defect modes within
the frequency gaps.

IV. SUMMARY

It is known that magnonic quasicrystals offer additional
possibilities in designing artificial magnonic band structures
as compared to magnonic crystals. The increased complex-
ity of the spin-wave spectrum and the appearance of bulk
localization of the spin-wave modes are the main effects of
the quasiperiodicity. In the paper we show additional steps
towards customization, namely the introduction of the dis-
order in the form of phasonic defects, and demonstrate their
impact on spectral properties and localization of the spin-wave
modes. To explore the role of disorder in quasicrystals, we
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studied many randomly generated configurations of defects.
We focused on selected configurations to discuss the profiles
of representative eigenmodes exhibiting the critical localiza-
tion at the edges of the frequency gaps, and strong localization
on phasonic defects inside the gaps. In particular, we show
that smaller gaps are closed under a small perturbation of the
quasiperiodicity, while wide ones are relatively robust to a dis-
order. It is assisted by transition from bulk modes to critically
localized modes, and finally to the modes strongly localized
on the defects. Interestingly, the modes from the frequency
gap edges become strongly localized by the introduction of
phasonic defects to the structure, which is correlated with the
disappearance of van Hove singularities.

We demonstrated that in the complex magnonic system,
where both short-range exchange interactions and long-range
dipolar interactions come into play, the effects like closing
the small gaps and enhancement of the modes’ localization
are reproduced for spin waves. The study opens the route
for the investigation of phasonic defects in two-dimensional
magnonic quasicrystals, which recently attracted interest due
to their application potential in magnonics signal process-
ing [49,62].
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FIG. 9. The illustration of the cut-and-projection (C&P) method
and the induction of phasonic defect. The array of dots represent the
square lattice in a 2D hyperspace. The Fibonacci lattice (black and
blue crosses) is generated by the projection of a square lattice from
the belt between solid and dashed lines onto the line y = τ−1x + c of
irrational slope, being the inverse of the golden ratio τ . The visible
(21-element) section of the Fibonacci lattice corresponds to the se-
lection of φ = 2πc/a = 0.8, see Fig. 1. For a defect-free Fibonacci
lattice the belt (between solid blue and dashed blue line) is straight.
By bending the belt (limited here by solid green and dashed green
lines), we can induce the phasonic defects in the Fibonacci lattice
(black and green crosses).

APPENDIX A: CUT-AND-PROJECT METHOD: PHASONS

The Fibonacci lattice can be generated from the square
lattice of the period a by the C&P method [3]. The lat-
tice points r = a(mx̂ + nŷ), where m, n are integers, are
projected onto the line y = τ−1x + c from the belt, below
this line, of the width a(cos α + sin α) = a(τ + 1)/

√
τ + 2,

where α = arccot(τ ) is the angle between the line and the
x direction, and τ is the golden ratio. This procedure gener-
ates the proper sequence of long (L = a cos α = aτ/

√
τ + 2)

and short distances (S = a sin α = a/
√

τ + 2) between lat-
tice points projected onto the line y, forming the Fibonacci
lattice, see Fig. 9. The position of the line (given by the
constant c) and the related shift in the perpendicular direction√

τ + 2(−x̂ + τ ŷ) express the structural degree of freedom in
defining a Fibonacci lattice. Regardless, on the value of this
shift, we always obtain the defectless lattices, differing only
in some uniform translation of the lattice sites along the real
(parallel) direction

√
τ + 2(τ x̂ + ŷ).

The introduction of phasonic defect can be described by
bending the belt. It is equivalent to the perturbation of struc-
tural degree of freedom, which can be expressed here as a
position-dependent shift of the belt: c(x). When this depen-
dence is small and smooth at the distances larger than the
lattice constant a, then the phasonic defects have a form of

(a)

(b)

FIG. 10. (a) Integrated density of states for SWs in the randomly
generated sequence of Co and Py, where the ratio between types
of strips is kept as for a Fibonacci quasicrystal, i.e., it corresponds
to the golden ratio. The dark-green color represents a histogram of
aggregated results obtained from 100 different random sequences
(the color scale is the same as in Fig. 4). Light-green points stand
for one specific structure for which the bar of the Fourier transform
(b) are plotted.
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the swaps between neighboring short and long distances in
the Fibonacci lattice (S ↔ L).

APPENDIX B: RANDOM SYSTEM

In Fig. 10(a) we show the IDOS spectrum of the SW
eigenmodes in a randomized sequence of Co and Py with
the same parameter as in the paper. To keep the same aver-
aged composition, we used 144 Py and 233 Co strips. We
generated 100 different configurations, and the intensity of
the green color reflects how often a specific position is oc-
cupied on the plot. By light green we plotted one selected
configuration, for which Fourier spectrum is presented below.
The IDOS spectrum of this exemplary configuration coincides
with the SW dispersion relation for a uniform ferromagnetic
layer with the volume averaged material parameters (i.e., with

the weights 1/τ and 1 − 1/τ ), except for a small deviation
around 14 GHz. The IDOS does not show any signatures
of the frequency gaps. It is also reflected in the Fourier
spectrum [Fig. 10(b)] of this random structure that do not
have any distinctive peaks except the peak at wave number
k = 0, which corresponds to the average value of the spatial
distribution of material parameters. The absence of Bragg
peaks is the signature of the lack of (quasi)crystal long-range
order.

The introduction of a phasonic defect for large approx-
imates of the Fibonacci quasicrystal does not change the
average number of Co and Py strips (it is obvious for the
swaps Co ↔ Py, whereas the substitutions Co → Py and
Py → Co are equally probable, see Fig. 1). In the limit �φ →
2π the IDOS spectrum approaches the spectrum of the disor-
dered system, as shown in Fig. 10(a).
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Chapter 5

Summary

The first magnonic structures could be dated to the 70ties of XX century when periodic
structures were fabricated in micrometers dimensions. Although the pioneering papers are
dated 50 years ago, not even mentioning the real beginning of the spin waves, that is 100
years old, I have a feeling that this is just beginning. During my short scientific journey,
I already could notice several ideas like skyrmions, topological states, and neuromorphic
computing that boost the interests of the field and can potentially lead to revolution. And I
believe that more will come. In my research, I focused on the most fundamental properties
in magnonic systems, propagation, and localization. I investigated a variety of systems,
however, the common part was always to describe them from this point of view.

The thesis presents the results of the theoretical and numerical studies. They are preceded
by Chapter 2, which contain a basic description of the terms that can help in understating
the research, and Chapter 3 which explains the numerical tools used to obtain outcomes.
The results were published in peer-reviewed journals and were incorporated into the thesis,
in Chapter 4. For each paper: P1-P4, one subsection is devoted. P1 is the work written
with the experimental team. We discuss the role of SW localization within the magnonic
crystal. SW is induced by magnetoelastic coupling with SAW and due to nonuniformity in
the internal field, the profile of SW is accordingly modified which is reflected in the strength
of magnetoelastic coupling. P2 was written with the theoretical team. The paper is devoted to
studies on SW propagation in the multimode waveguide that has a bent. Based on analytical
and numerical works, we propose a method for guiding the SW through a curved section that
would keep the coherence of the signal. We exploited the idea of graded-index elements to
model the material parameter of the area and tilt the wavefront of the SW. In P3 are derived
the existence conditions for interface mode between two semi-infinite magnonic crystals.
Theoretical work is based on the work of Zak and is supported by numerical calculations. We
comprehensively investigated the impact of exchange and dipolar interaction on the results
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as well as structural parameters. P4 discusses the role of disorder in the quasicrystal. We
introduce disorder in the form of phasonic defects, swapping constituent elements at specific
positions. Investigating the different levels of disorder as well as the different realizations of
disorder, we could qualitatively describe the evolution of the spectrum, and how band gaps
are affected. Considering specific configuration, we could track the evolution of the mode,
and in particular, speculate about the localization.

Even though my research was concentrated on the propagation and localization of SW,
the investigated system was rather diverse. I think that the studies on considered systems
and their properties definitely needs continuation. At the end of my studies, I was involved
in the project “Anderson localization of spin waves in magnonic nanostructures”, grant no.
2020/36/T/ST3/00542. This research was financed by the National Science Centrer, under the
ETIUDA program. In this project, I cooperate with prof. Dirk Grundler, Andrea Mucchietto
and Dr. Mingran Xu from EPFL in Lausanne. Our goal is to experimentally demonstrate
Anderson localization, in the magnonic system. For the prototype structure, we consider
decorated film, where the internal field is modified by a magnetic element on the top. We
want to consider transverse Anderson localization, in the analogy to photonics, where SW
is propagating along the coupled waveguides. The research is still in the preliminary stage,
there are challenges that need to be addressed, but I am sure there will exciting outcomes.

The thesis addressed selected problems related to the spin wave localization and propa-
gation in magnonic structures. The presented research demonstrate the potential for wave
processing in nanostructures where the unique properties of spin waves can be used. I hope
that my work will encourage other for the studies in this field.
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