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P H Y S I C S

Pattern recognition with neuromorphic computing 
using magnetic field–induced dynamics of skyrmions
Tomoyuki Yokouchi1,2*, Satoshi Sugimoto3, Bivas Rana1,4, Shinichiro Seki1,5,6,7,  
Naoki Ogawa1,5,6, Yuki Shiomi2, Shinya Kasai3,5, Yoshichika Otani1,8,9

Nonlinear phenomena in physical systems can be used for brain-inspired computing with low energy consumption. 
Response from the dynamics of a topological spin structure called skyrmion is one of the candidates for such a 
neuromorphic computing. However, its ability has not been well explored experimentally. Here, we experimentally 
demonstrate neuromorphic computing using nonlinear response originating from magnetic field–induced dy-
namics of skyrmions. We designed a simple-structured skyrmion-based neuromorphic device and succeeded in 
handwritten digit recognition with the accuracy as large as 94.7% and waveform recognition. Notably, there 
exists a positive correlation between the recognition accuracy and the number of skyrmions in the devices. The 
large degrees of freedom of skyrmion systems, such as the position and the size, originate from the more complex 
nonlinear mapping, the larger output dimension, and, thus, high accuracy. Our results provide a guideline for 
developing energy-saving and high-performance skyrmion neuromorphic computing devices.

INTRODUCTION
Artificial neural networks, mimicking human brains, exhibit extra­
ordinary abilities in several tasks, such as image recognition (1), 
machine translation (2), and a board game (3). Nowadays, most 
artificial neural networks rely on silicon­based general­purpose 
electronic circuits, such as a central processing unit and a graphics 
processing unit. However, these circuits consume a large amount of 
energy and are approaching the physical limits of downscaling (4). 
Therefore, developing devices specialized for brain­inspired com­
puting, namely, neuromorphic devices, is highly required (4, 5). In 
particular, nonlinearity and short­term memory effects are essential 
functions for neuromorphic devices that various spintronic devices 
can offer (6–21). Among them, we focus on a topological spin structure 
called magnetic skyrmion (22–31). So far, skyrmion­based neuro­
morphic devices, such as reservoir computing devices (9–14), synapse 
devices (15, 16), and probabilistic computing devices (17, 18), have 
been studied to bring about high performance. However, a fully 
experimental evaluation of its ability for neuromorphic tasks such 
as pattern recognition is still lacking.

We design the skyrmion neuromorphic computer on the basis of 
a reservoir computing model (7–13, 32–39). The conventional reser­
voir computing model consists of two parts (Fig. 1A). The first part, 
called the “reservoir part,” performs a complex nonlinear transfor­
mation of input data into high­dimensional output data. Here, the 
dimension is the number of linearly independent outputs. In this 
process, the reservoir part temporally stores the information of past 
input to make the output depend on both present and past inputs 
(short­term memory effect). The second part conducts a linear 

transformation of the outputs from the reservoir part. The coefficient 
parameters of this linear transformation are optimized by using a 
training dataset so that the final output becomes a desirable one. 
Incidentally, the nonlinear transformation of input into high­ 
dimensional outputs is the essence of reservoir computing; the 
linearly inseparable data can become linearly separable in the high­ 
dimensional space, enabling complex data classification as in the 
kernel method (40). Optimizing parameters (i.e., training) in reser­
voir computing is unnecessary for the reservoir part. In other 
words, the reservoir part performs the complex nonlinear transfor­
mation with fixed parameters. Hence, we can implement the reser­
voir part using a physical system with the complex nonlinearity and 
memory effect (or equally hysteresis) with short­term properties 
(7–13, 33–37). As shown below, skyrmion systems also exhibit non­
linearity and short­term memory effects. Moreover, the skyrmion 
system has large degrees of freedom because each can take various 
states with different positions and sizes. This feature theoretically 
brings about a complex transformation of input data and high 
performance (9–13). However, it has not been experimentally ex­
plored well. We experimentally found that the skyrmion­based 
physical reservoir device exhibits good abilities in recognition tasks. 
Notably, although the structure of the present device is quite simple, 
the recognition accuracy as high as 94.7% is obtained in a handwritten 
digit recognition task, indicating an advantage of the skyrmion system 
in neuromorphic computing.

RESULTS
Our skyrmion­based physical device consists of parallelly connected 
“subsections” (Fig. 1, B to D). A subsection is a simple­shaped Hall 
bar made of Pt/Co/Ir film deposited on SiO2/Si substrate, in which 
skyrmions appear (41–43). Each subsection has single input and 
output. The input signal is a time­dependent out­of­plane magnetic 
field [HAC(t)] whose waveform is the same as what we want to com­
pute. The output is an anomalous Hall voltage [V(t)], which changes 
in response to HAC(t) because of the HAC(t)­induced change in 
magnetic structures. We note that the magnitude of the topological 
Hall effect is much smaller than that of the anomalous Hall effect 
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since the size of the skyrmion is large—a few micrometers. As 
shown later, in this process, V(t) depends on the past input signal 
and is nonlinear to HAC(t) as required in a physical reservoir. Then, 
we parallelly connect N subsections, in which the different magni­
tude of a constant out­of­plane magnetic field (Hconst)  is applied 
(Fig. 1D). Because the magnetic structures differ depending on 
Hconst (fig. S1), the output signals from the subsections tend to be 
linearly independent of each other. We input the same signal into 
N subsections. Hence, the skyrmion­based neuromorphic computer 
device nonlinearly converts a one­dimensional time­series input 
[HAC(t)] to a linearly independent N-dimensional time­series 
outputs [V(t) ∈ ℝN] as follows

   H  AC  (t ) → V(t)  

  V(t ) = [ V   1 (t ) , ⋯ ,  V   N (t ) ]  

Here, Vi(t) is the output signal of the ith subsection. This nonlinear 
mapping into the high­dimensional space is crucial for skyrmion­ 
based neuromorphic computing like conventional reservoir com­
puting. The final output is a linear combination of sampling data 
from V(t). The linear combination coefficients are optimized using 
a training dataset to ensure that the final output is desirable (see 
Materials and Methods for details). We used only one Hall bar in 
the actual measurement and obtained V(t) by repeating the mea­
surement N times for the same HAC(t) with Hconst changed. All 
experiments were performed at room temperature.

First, we present basic properties of response in a single sub­
section, which shows short­term memory effect and nonlinearity. 
Figure 2 (A to D) shows the time dependence of the input magnetic 
field HAC(t) and the output anomalous Hall voltage V(t). When we 
applied two cycles of a sine wave magnetic field, V(t) exhibited dis­
tinct variation (Fig. 2C). This change originates from the magnetic 

field–induced transformation of the spin structure. As shown in 
Fig. 2 (E to H), the size, form, and the number of skyrmions vary 
in response to HAC(t), and consequently, the total magnetization in 
the Hall bar area also varies, which leads to the observed change in 
V(t). We note that the magnitude of HAC(t) required for saturating 
the magnetization is larger than that of Hconst because the magnetic 
structure cannot totally follow HAC(t). Besides, the V(t) signal 
depends on a past input; when we change the first cycle of the input 
signal from the sine wave to a square wave, as shown in Fig. 2B, the 
time profile of V(t) differs from that in the case of two cycles of 
the sine wave (see Fig. 2, C and D). In particular, the second cycle of the 
input signal is a sine wave in both cases; however, V(t) profiles 
corresponding to the second cycle are substantially different. In 
other words, the output signal depends on the past input signal (i.e., 
memory effect). This memory effect is due to the history­dependent 
time evolution of the spin structures originating from the first­order 
transition nature of the skyrmion system. As shown in Fig. 2 (E to L), 
the time evolution of spin structure for the first cycle differs be­
tween the sine and square waves (Fig. 2, F and J). As a result, the 
spin structure during the second cycle of HAC(t) is also different 
in two cases (Fig. 2, G and K), which makes V(t) dependent on 
past inputs.

Moreover, the memory effect in the skyrmion system has a 
short­term property. In other words, after turning off the input sig­
nal, the output signal fades out and goes back to an initial value. As 
shown in fig. S2, after two cycles of the sine wave are input, the 
output signals start to return to an intimal value, which indicates 
that the skyrmion system has the short­term memory property. We 
note that the time to return the initial state depends strongly on 
Hconst, and in some Hconst values, the time is more than several tens 
of seconds. We also investigate the nonlinearity in V(t) versus 
HAC(t). We measured the output anomalous Hall voltage V(t) when 
two cycles of sine wave magnetic field with various amplitudes were 

Fig. 1. Concept of skyrmion-based neuromorphic computing. (A) Schematic for the conventional reservoir computing model. (B) Schematic illustration of a Hall bar 
device and a magnetic skyrmion. (C) Conceptual diagram for the data conversion in a subsection. (D) Schematic illustration of a skyrmion-based neuromorphic computer. 
Polar Kerr images of the subsection with various constant magnetic fields (Hconst) in the absence of a time-dependent magnetic field [HAC(t)] are also presented.
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applied (Fig. 2, M and N). The magnitude of V(t) at t = 2.5 s as a 
function of the amplitude of the input magnetic field is presented in 
Fig. 2O. The V(t) is not proportional to the amplitude and even 
shows the sign change, which indicates the strong nonlinearity of 
the output anomalous Hall voltage to the input magnetic field as 
required in a physical reservoir.

Next, we demonstrate a waveform classification task, widely 
used as a benchmark task for neuromorphic computing (7, 38, 39). 
In this task, the input signal is a waveform of a random combination 
of sine and square waves (Fig. 3A), and the desired output is 1 for 
the sine waves and −1 for the square waves. We input the waveform 

in Fig. 3A into the skyrmion­based reservoir device with N = 41 
subsections. The amplitude of HAC(t) is 24 Oe. Before inputting the 
signal, we create the ferromagnetic state by applying a large mag­
netic field to erase the memory of previous inputs. As an example, 
Vi(t) signals outputted from some subsections (Hconst = 1.04, 0.00 
and −1.60 Oe) are displayed in Fig. 3B; the input data are complicat­
edly transformed, and their profiles differ in different subsections as 
expected. We sampled the output signals with the sampling rate of 
100 Hz and calculated the final output as  y( t  k   ) =  ∑ i=1  41     W  i    V   i ( t  k  ) , 
where Wi (i = 1,2, ⋯ ,41) is the time­independent coefficient, and tk 
is the time at the kth sampling point (see also Materials and Methods). 
Then, Wi is optimized by using the first half of the waveform (0 to 
25 s) so that the mean squared error between y(tk) and the target 
value is the minimum, and finally, we binarized y(tk) (see Materials 
and Methods for details). As shown in Fig. 3 (C and D), the output 
values follow the desired output values well not only in the input 
dataset used for the training (0 to 25 s) but also in the dataset not 
used for the training (25 to 50 s).

To investigate the effect of the skyrmion formation on the recog­
nition accuracy, we fabricate the Hall bar devices accommodating 
fewer skyrmions and ferromagnetic­like domains (devices B to D) 
as shown in Fig. 3E by controlling the strength of perpendicular 
magnetic anisotropy (PMA) (see Materials and Methods). Here, the 
magnitude of PMA gradually decreases from device D to device 
A. Then, we performed the same waveform recognition task with 
various amplitudes of HAC(t). As shown in Fig. 3F, the recognition 
accuracy in device A, which has the largest skyrmion population 
of the four devices, is high. In contrast, device D, which accommo­
dates ferromagnetic domains, exhibits low recognition accuracy for 
all HAC(t) amplitudes. We count the number of skyrmions existing 
during the waveform recognition task 〈nsk〉  (see Materials and 
Methods for details); as shown in Fig. 3G, we found a large 〈nsk〉 in 
device A and a small number in device D as expected. Figure 3H 
shows the correlation between the recognition accuracy and 〈nsk〉, 
exhibiting a positive correlation. This result suggests that the skyrmion 
formation is critical in improving recognition accuracy.

Before discussing the origin of better recognition accuracy in the 
skyrmion system, we demonstrate that the skyrmion­based reservoir 
device can solve a more complex task: handwritten digit recognition. 
We use the commonly used Mixed National Institute of Standards 
and Technology database (MNIST) (44), some examples of which 
are shown in Fig. 4F. A preprocessing was performed to convert a 
two­dimensional image to a one­dimensional input signal (see 
Materials and Methods for details). Figure 4 (A to D) shows the 
preprocessing for an input digit “5,” as an example. We input the 
converted signal into the skyrmion­based reservoir device (device A) 
with N = 9 subsections. The output signals corresponding to the 
input digit “5” are presented in Fig. 4E. The final output is obtained 
by a post­facto linear transformation of the output signals from 
each subsection, in which 9 × 176 × 10 weights were used (see 
Materials and Methods for details). Using 13,219 train images, we 
optimize the coefficients of the linear transformation. After the 
optimization, 5000 test images not included in the train dataset are 
used to test the recognition accuracy. Figure 4G presents a confu­
sion matrix obtained in the test process, which shows that the 
skyrmion­based reservoir outputs desired digits well. The recognition 
accuracy is 94.7 ± 0.3%. This accuracy is better than an experiment 
in tungsten oxide (WOx) memristors–based reservoir device (88.1%) 
(33), simulation in a nanowire­based reservoir system (90%) (37), 

Fig. 2. Memory effect and nonlinearity in the skyrmion system. (A to D) The 
time profile of the input magnetic field (HAC) (A and B) and the corresponding Hall 
voltage (C and D) in the Hall bar device A with the constant magnetic field 
Hconst = 1.12 Oe. (E to L) Snapshots of polar Kerr images during the application of 
HAC for the Sin-Sin input (E to H) and the Square-Sin input (I to L).. The corresponding 
time points are represented in (C) and (D) by the triangles. (M and N) The time 
profile of HAC with various amplitudes (M) and the corresponding Hall voltage output 
(N) in the Hall bar device A with the constant magnetic field Hconst = 1.12 Oe. (O) The 
Hall voltage output at t = 2.5 s as a function of the amplitude of HAC. The solid line 
is a guide for eyes.
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and chip­level simulation in a skyrmion­based artificial synapse sys­
tem (89%) (15). We note that when we directly performed the linear 
transformation of the preprocessing data without skyrmion­based 
reservoir devices, the recognition accuracy is 9.9 ± 0.4%.

DISCUSSION
Last, we discuss the origin of the better recognition accuracy ob­
tained using the skyrmion­based neuromorphic device than the 
ferromagnetic domain–based one. First, the creep motion of ferro­
magnetic domains decreases the recognition accuracy. In fig. S3, we 
present the 41 output signals (Hconst = −1.6 to 1.6 Oe) in the wave­
form recognition task for skyrmions (device A) and ferromagnetic 
domains (device C). In the case of ferromagnetic domains, the 
center of the oscillation (the red lines in fig. S3F) gradually changes 
with time at low Hconst. This tendency originates from a slow change 
in the total magnetization in the Hall bar due to the thermally 
induced creep motion of the ferromagnetic domains. Such a gradual 
change in the background must reduce the recognition accuracy 
because even if we input the same signal, the outputs might be dif­
ferent depending on time, causing false recognition. In contrast, in 
the case of skyrmion (device A), the output signals oscillate around 
the time­independent values. This is because thermal agitation has 
a lower impact on the magnetization in the skyrmion­based device 

(i.e., the total number of skyrmions) compared with the magnetization 
in the ferromagnetic domain–based device due to the topological 
stability of skyrmions (i.e., a finite energy barrier between skyrmions 
and ferromagnetic state). Hence, the profiles of the output signals 
are reproducible and determined by the form of the input signal. As 
shown in fig. S4 and Supplementary Text, the output signals and the 
number of skyrmions are reproducible. Although some skyrmions 
are created/annihilated stochastically because of the thermal effect, 
the stochastic fluctuations are averaged out since many skyrmions 
exist in the device.

Second, the larger number of output data dimensions, which 
originates from the large degree of freedoms of the skyrmion sys­
tem, also contributes to better recognition accuracy. As mentioned 
above, the complex nonlinear mapping into high­dimensional space 
is a crucial factor for the present neuromorphic computing. Because 
of the particle nature of skyrmions, skyrmion systems have many 
degrees of freedom, such as position and skyrmion size, causing 
different spin structural responses to the input signals HAC(t). This 
results in high­dimensional mapping. However, the ferromagnetic 
domain state consists of only two internal states (up and down 
domains). Hence, the transformation should be less complex than 
the skyrmion system. To further discuss the dimensionality, we 
evaluate the dimensionality of the experimentally obtained output 
signals. The dimensionality is defined by the linearly independent 

Fig. 3. Waveform recognition task. (A) The waveform of input signal [HAC(t)] for the waveform recognition task. The input signal is a waveform of a random combination 
of sine (red) and square waves (blue). (B) The output signals (V) in some of the subsections with different constant magnetic fields (Hconst). (C and D) The final output 
calculated by the linear combination of the output signals in the 41 subsections (C) and its binarization (D). The blue and red lines are the desired output. (E) Polar Kerr 
images of devices A to D. The thicknesses of the Co layer in devices A, B, C, and D are 0.655, 0.656, 0.657, and 0.658 nm, respectively. (F) The recognition accuracy in the 
waveform recognition task for devices A to D for various amplitudes of HAC. (G) The average number of skyrmions 〈nsk〉 during the waveform recognition task for devices 
A to D for various amplitudes of HAC. (H) A scatterplot of 〈nsk〉 and the recognition rate. A correlation coefficient of 0.82 is obtained.
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outputs from the subsections. Thus, we plot an output signal of the 
ith subsection (Vi) obtained in the waveform recognition task as a 
function of an output signal of the jth subsection with a different 
Hconst value (Vj) (i ≠ j) (fig. S5). If Vi and Vj are linearly dependent 
(i.e., Vi = CV j, where C is a coefficient), the profile becomes a 
straight line. However, if Vi and Vj are linearly independent, the 
curve shape becomes nonmonotonous. As shown in fig. S5A, the 
profiles for the skyrmion­based device tend to be nonmonotonous 
smooth curves. In contrast, the ferromagnetic domain–based device 
profiles are relatively straight and squarish (fig. S5C). These results 
indicate that the number of linearly independent outputs in the 
skyrmion­based device is more than that in the ferromagnetic 
domain device. In other words, the skyrmion­based device has a 
larger dimensionality than the ferromagnetic domain–based device. 
This fact contributes to the better recognition accuracy in the skyrmion­ 
based device.

We experimentally conclude that the skyrmion system is a 
promising candidate for neuromorphic computing. The high degree 
of freedom and topological stability of the skyrmions lead to repro­
ducible, complex, and high­dimensional mapping and, consequently, 
better recognition accuracy. The present skyrmion­based neuro­
morphic system consists of less than 10 simple­shaped and microscale 
Hall bars. Nevertheless, the recognition accuracy in the handwritten 
digit recognition task is better than other neuromorphic devices 
(15, 33, 37), which require the fabrication of a large number of 
nanoscale objects. Moreover, using nanometric skyrmions (45), 
current­induced dynamics of skyrmions (12, 46), and magnetic 

tunnel junctions (47) can further improve the performance. In 
addition, other spin textures with high degrees of freedom and the 
stability against thermal agitation, such as anti­skyrmions (48) and 
skyrmion strings (49), might also be used for the neuromorphic 
system. Our findings provide a previously unknown pathway for de­
signing a high­ performance neuromorphic computer.

MATERIALS AND METHODS
Device fabrications
We deposited multilayer films on SiO2/Si substrates by DC and 
radio frequency (RF) magnetron sputtering. The complete stack 
structure of the films used in this work is SiO2/Si substrates/Ta 
(5 nm)/Pt (5 nm)/Co (dCo)/Ir (0.8 nm)/Pt (5 nm) in which the 
nominal thickness of Co (dCo) gradually varies from 0.6 to 0.7 nm. 
The Co layer was deposited by using DC sputtering, and the other 
materials were deposited by RF sputtering. Thermodynamically stable 
skyrmions form in an area with dCo ~ 0.65 nm, and ferromagnetic 
domains are observed in a thicker area. This is because dCo affects 
the PMA, which determines the stable spin structure as investigated 
in our previous works (41–43). Next, we patterned the films by using 
maskless ultraviolet lithography followed by Ar ion milling. The 
width of the Hall bars is 40 m.

Waveform recognition
Waveform recognition task is divided into two parts: (i) the trans­
formation of an input signal by using the physical neuromorphic 

Fig. 4. Handwritten digits recognition task. (A to D) Schematic for preprocessing for the handwritten digits recognition task. The two-dimensional image (A) is converted 
to a one-dimensional array (B). A sine wave is multiplied by each data point (C), and an input signal is obtained (D) (see also Materials and Methods for details). (E) The 
output signals from subsections corresponding to the input digit “5.” (F) Some examples from the MNIST database. (G) A confusion matrix showing the recognition results 
from the skyrmion-based reservoir versus the desired outputs. A recognition accuracy of 94.7 ± 0.3% is obtained.
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device and (ii) a linear transformation of the signals output from 
the neuromorphic device and optimization of their weights. For the 
first part, we input a time­dependent magnetic field Hconst + HAC(t). 
Here, Hconst is a constant out­of­plane magnetic field in order to 
make a magnetic structure in each subsection a different one, which 
results in the linearly independent outputs as mentioned in the 
results section. The wave profile of HAC(t) corresponds to the signal that 
we want to process and is a random combination of sine and square 
waves as shown in Fig. 3A in this case. We generate Hconst + HAC(t) 
by applying the current to a coil with the use of a function generator 
(NF WF1974) and a bipolar amplifier (NF HSA42011). The direc­
tion of the magnetic field is perpendicular to the film plane. The 
consequent time­dependent Hall voltage [V(t)] is measured with 
lock­in techniques (NF LI5650) by applying AC with current density 
j = 2.5 × 108 Am−2 and frequency f = 333 Hz. The skyrmion­based 
neuromorphic computer used here has 41 subsections with differ­
ent Hconst values. Thus, we obtain the converted signals as follows: 
V(tk) = [V1(tk), ⋯ , V41(tk)]. Here, Vi(t) is the output signal of the ith 
subsection, and tk is time at the kth sampling point. We sampled 
the data with the frequency of 100 Hz (i.e., k = 1,2, ⋯ ,5000 and 
t0 = 0, t1 = 0.01, ⋯ , tk = 0.01k, ⋯ , t5000 = 50 s).

The second part is performed on a conventional computer. 
The final output signal is the linear combination of V(tk) as follows: 
 y( t  k   ) =  ∑ i=1  41     W  i    V   i ( t  k  ) . Here, Wi is the time­independent coef­
ficient and is optimized to minimize the mean square error   
∑ k=1  2500   [y( t  k   ) − L( t  k   )]   2   . The label L(tk) is 1 when the input signal is 
the sine wave and  −1 when the input signal is the square wave 
(Fig. 3, C and D). For the optimization, we use the first half of the 
dataset (i.e., 2500 data obtained from t = 0 to 25 s). Last, we bina­
rized the y(tk).

Count of the skyrmion number during the waveform 
recognition task
The number of skyrmions depends on the device number (A to D) 
and the amplitude of the input signals [HAC(t)]. During the waveform 
recognition task, we take a video of time evolution of magnetic 
contrast with the use of a poler Kerr microscopy. The exposure time 
is approximately 50 ms. Then, we count the number of skyrmions 
by using a conventional binarization method. Here, we defined a 
particle whose size is below 6 by 6 m2 as a skyrmion. Last, the 
number of skyrmions is normalized by the area of the Hall bar and 
the execution time of the task, and 〈nsk〉 is obtained.

Handwritten digit recognition
The handwritten digit recognition task is divided into three parts: 
(i) transformation of two­dimensional data into one­dimensional 
input data, (ii) nonlinear transformation of an input signal by using 
the skyrmion­based reservoir computing device, and (iii) a linear 
transformation of the output signals from the reservoir and optimi­
zation of their weights.

At the beginning of the first part, we removed the unused border area 
of the images by reducing the original 28 × 28 images into a 22 × 20 
image (Fig. 4A). Then, we reshaped the two­dimensional 22 × 20 data 
points to one­dimensional 440 data points (Fig. 4B). In the next step, 
we multiply each data point by one cycle of sine wave consisting of 
20 data points and obtained a sequence of 440 modulated sine waves 
(Fig. 4, C and D) (i.e., the number of total data points is 8800).

In the second part, we input a time­dependent magnetic field 
Hconst + HAC(t) into the skyrmion­based neuromorphic device with 

nine different Hconst values. The amplitude of HAC(t) is 64 Oe for 
four subsections and 70 Oe for five subsections. The frequency is 
200 Hz. The consequent time­dependent Hall voltage [V(t)] is mea­
sured with lock­in techniques by applying AC current with current 
density j = 2.5 × 108 Am−2 and frequency f = 2.99 kHz. The sampling 
rate is 80 Hz. Then, the output signal for the dth data is obtained as 
follows:   V  d   = ( V d  1  ( t  k   ) , ⋯ ,  V d  i  ( t  k   ) , ⋯ ,  V d  9  ( t  k   )) , where tk is time at the 
kth sampling point, i.e., k = 1,2, ⋯,176 and t0 = 0, t1 = 0.0125, ⋯ , 
tk = 0.0125k, ⋯ , t176 = 2.2 s , and 9 is the number of subsections.

Last, we calculate the final output for the dth dataset as follows

    y   d  =  V  d   W = ( V d  1  ( t  0   ) , ⋯  V d  1  ( t  176   ) , ⋯ ,  V d  9  ( t  0   ) , ⋯ ,  V d  9  ( t  176   )) 

                                       
(

    
 W  1,1  

  
⋯

  
 W  1,10  

   ⋮  ⋱  ⋮   
 W  1584,1  

  
⋯

  
 W  1584,10  

  
)

     

Here, the output yd is a 1 × 10 vector, and W is a 1584 × 10 weight 
matrix. Then, we introduce the 1 × 10 label vector Ld. If the dth 
input data are a digit of m, the mth components of Ld are one, and 
the others, zero. We optimize to minimize the mean square error   
∑ d=1  13219   ∥ y   d  −  L   d   ∥   2   by using 13,219 train data. In the test process, 
we calculate yd, and the predicted digit is determined from the maxi­
mum component of yd. For evaluation of the recognition accuracy, 
5000 test images that are not included in the train dataset are used. 
To reduce the ambiguity due to a choice of test and train data, we 
repeated optimization 10 times with different choices of test and 
train data and take the average. The choice of train and test images 
is fully random. As shown in fig. S6A, the recognition accuracy 
increases with the increasing number of train images and is already 
saturated at 13,219 train data. In addition, the recognition accuracy 
also increases with the increasing number of subsections N (fig. 
S6B). We note that the total experimental time for one subsection 
is 2.2 s × 18,219 = 11.1 hours.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq5652
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